### SoCalGas-31

# Exhibits to Prepared Supplemental Rebuttal Testimony of Glenn La Fevers (October 26, 2020)

I.19-06-016

ALJs: Hecht/Poirier

Date Served: March 12, 2021

From:

Turner, Benjamin@DOC

To:

Lauren.Wolman@mail.house.gov

Subject:

Fwd: Aliso update

Date:

Friday, November 13, 2015 11:09:09 PM

#### Update from DOGGR field staff:

Sent from my iPhone (pleeze esckooze tiepoes and occasional inadvertent brusqueness)

Ben Turner

Assistant Director, Governmental and Environmental Relations Department of Conservation

801 K Street, MS 24-02

Sacramento, CA

Office: 916-445-8733

Begin forwarded message:

Subject: Aliso update

Here is an update from a field engineer:

Today was an extremely eventful day at the SS 25 site. Bruce Hesson and I arrived at the command post at 0630 this morning. We were quickly briefed by Todd Van De Putte with SoCalGas on the day's operations. The well conditions were unchanged from the previous day. The composite bridge plug set at 8412' was holding and no meaningful pressure had been added or subtracted from the 27/8" tubing. The operator then ran wireline and punched holes in the 27/8" tubing in preparation for the kill job. After the tubing shots were fired, the tubing began to return to the original pressure of  $\pm 1600$  psi as expected.

I was then called to the SS 25 site to witness the pumping operations. I did not have a time piece with me as all electronics were removed from the site. Therefore, times are estimated here. The winds were blowing to the SW at 15-20mph. At around 1100 hours pumping began with a 5 bbl polymer pill followed by 9.4 ppg CaCl2 mud. The rate of pumping was 8 bbls/min and the operator was bullheading through the 2 7/8" tubing. The CT rig was not used and the BOPE stack and riser had been removed.

After 45 bbls of 9.4 ppg mud was pumped, the tubing pressure began to increase and there was a ±100 psi drop in the 7" annulus. The choke was then opened full and a small amount of fluid and gas was coming to the return tanks. It appeared the well had turned the corner on the 2 7/8" tubing. At about 100 bbls away or so, the well began to blowout to surface despite having the choke at 100% open. A large column of gas, aerated mud, and rock formed a geyser around the well head. Mud brine also began to flow from around the well head fissures. The pumping rate was kept at 8 bbls/min and the tubing was keeping pressure. The

pump was able to chase the fluid. At the recommendation of Boots and Coots, Bret Lane w/ SCG, Mike Dozier also w/ SCG and myself retreated from the choke controls and remained at the SS 25 command bunker. A significant amount of gas and mud continued to blow around the well head and also floated downwind to the SW. The well continued to blow around the wellhead for the next 300 bbls of pumping which should have been about 40 minutes of time elapsed. At this point the site began to run out of kill fluid as the theoretical wellbore volume of 318 bbls had been pumped. More fluid was pumped into the well and the well continued to blow into the return tank and around the well head. The dust column reached an estimated 60' in height.

At around 420 bbls away, Scott McGurk, Scott Walker, and Bruce Hesson came up to the SS 25 site after monitoring conditions by computer at an adjacent lower location. I met the three half way down the road and we quickly tested the east side of the hill where gas had been leaking out of the hillside. The gas monitor did not detect any gas. The leak points that I had previously noted were nearly dead.

We then walked back to the SS 25 site. After speaking with Bret Lane and Danny Clayton with Boots and Coots, it was agreed that the operator should continue to pump the well despite the surface gas leakage as this may be the best opportunity to kill the well. At around 550 bbls away the surfaced mud began to flow off of the well pad and down the road. A vacuum truck was called and the mud flowed into a concrete catch basin. This basin was plugged and the mud sucked out with the vacuum truck before it could break containment. The leaking kill mud did not breach the hot zone. The operator continued to pump at about 1 bbl/min. The well continued to blow but the rate was reduced. After 800 bbls of mud away, a 10 bbl polymer pill was spotted into the tubing. It was allowed to gravity feed down the tubing. Pumping was stopped at  $\pm 1445$  hours. There was no more mud to pump on site after 2.5 wellbore volumes were pumped. The well continued to blow, but fluid stopped coming from the wellbore. After about 10 minutes the dust began to abate and we were able to approach the wellbore. We observed the well from the choke manifold controls upwind of the blow. The well was blowing a small amount of gas from the well cellar. Most of the gas however, was blowing from a large fissure about 20' north of the wellhead. This gas was a significant blow and it was decided that it should be left alone for the night. There was no more mud to pump and the fluid stopped emanating from the wellbore. The tubing was on a vacuum. The 7" casing had 185 psi on it and the 11 3/4" had ±65 psi on it. We decided to leave the site after this inspection and walked down to the command area. We arrived at command at  $\pm 1500$ .

Phone calls to HQ ensued and Division management was updated on the day's activities.

<u>Tomorrow</u> will likely consist of a wireline run to collect data. There are several possibilities as to a course of action. The tubing pressure will determine whether or not a cement job is feasible. The well head did appear intact and it may be possible to pump cement. However, if the tubing returns to significant pressure, a cement job may not be possible at this time. This means that insufficient fluid reached the storage zone and a cement plug will likely only agitate the well.

If the tubing pressure is reasonably low, a noise log will likely be run to determine if and where gas is migrating. A fluid shot in the 7" annulus may also be possible, or a capacitor wireline tool may be of use as well. If the tubing is dead, then the storage zone is dead. This means that the gas blow actually came from a shallower zone behind the 7" casing and likely below the shoe of the 11 ¾" casing. It is possible that when the kill fluid was pumped into the well an ice plug that had built up around the 11 ¾" x 16" wellbore annulus broke down allowing the gas to vent. This hypothetical ice plug may have resulted in choking back the gas release and forcing the gas to migrate to the surrounding hillsides. Once this ice was broken, the most convenient path of flow was through the open choke and around the 11 ¾" casing. This could explain why the hillside gas leaks stopped.

I shall return to the SS 25 site at 0630 hours tomorrow. If you have any questions please don't hesitate to text or email.

Sent from my iPhone (pleeze esckooze tiepoes and occasional inadvertent brusqueness)

Ben Turner
Assistant Director, Governmental and Environmental Relations
Department of Conservation
801 K Street, MS 24-02
Sacramento, CA
Office: 916-445-8733

Ex. I-1, page 3 of 3

Safety and Enforcement Division's (SED) Response to Southern California Gas Company Data Request 12:

Date Provided by SED to SoCalGas: October 2, 2020

1. Identify all facts supporting YOUR allegation that SoCalGas "purposefully" extracted and vented oil into the atmosphere on November 13, 2015.

SED objects to Question 1 to the extent that it mischaracterizes Ms. Felts' testimony. Taking one term out of context does not properly characterize a portion of testimony and the conclusion must be read in its entirety. Namely, the entire quote on page 4 of Ms. Felts' surreply testimony, Chapter 8, lines 23-25, is: "In conclusion, records suggest that a purposeful release of oil and gas occurred and that SoCalGas subsequently attempted to cover up the facts surrounding this release in violation of 451." Notwithstanding this conclusion, Ms. Felts answers as follows:

Response: All facts supporting the allegation were presented with testimony. See response to Question 8 below.

2. Produce all DOCUMENTS supporting YOUR allegation that SoCalGas "purposefully" extracted and vented oil into the atmosphere on November 13, 2015.

SED objects to this question as mischaracterizing Ms. Felts' testimony. The precise quote from Ms. Felts' testimony page 1, lines 16 to 17 is, "However, I have recently discovered evidence that shows SoCalGas purposely extracted oil and vented it into the atmosphere during the SS-25 incident." Notwithstanding this objection, Ms. Felts answers as follows.

Response: The Nov 13, 2015 text message sent from "777200585003" reported "oil was extracted and was vented into the atmosphere." Grammatically, this is a purposeful statement and cannot be construed otherwise. This text message is quoted in its entirety in Chapter eight of testimony, page 2, lines 4 through 10.

3. Please reference Chapter Eight, page 2, lines 16-19, and footnote 7, which states:

Apparently, during the day, and before 5:26 PM, which is the time stamp for the text message that went out, there was a release of gas, oil and brine that shot feet into the atmosphere and covered the surroundings with oil.<sup>7</sup>

- a) Identify the individual or individuals who made the "oral comment" referenced in the excerpted passage above.
- b) Identify the time and date of the "non-related meeting" referenced in the excerpted passage above.
- c) Identify the subject of the "non-related meeting" referenced in the excerpted passage above.
- d) Identify all individuals who attended the "non-related meeting" referenced in the excerpted passage above.

<sup>7</sup> Based on oral comment that I recall hearing in a non-related meeting around the time of the incident. I have not been able to confirm this fact with SoCalGas documentation.

#### Response:

- 3.a. After considerable research into past records, I have not been able to definitively recall when I heard the comment or who made it. Since I was not on contract yet, I know the meeting was not associated with this case. I only know that when I came into the project, I had in mind to look for evidence of the event as I worked through the evidence.
- 3.b. See the response to 3.a.
- 3.c. See the response to 3.a.
- 3.d. See the response to 3.a.
- 4. Identify all facts supporting your allegation that "another [kill] attempt was tried by SoCalGas or Boots and Coots" that is not described the Blade Report.

SED objects to this question as vague in that it does not reference the portion of testimony to which the quote refers. SED understands the question to be asking about Ms. Felts' sur-reply testimony, page 3 line 21 to page 4 line 2 and is instructing Ms. Felts to answer with that understanding. Based upon that understanding, SED further objects to the question as a mischaracterization of Ms. Felts' testimony. Ms. Felts' testimony did not state that another kill attempt *was* tried by SoCalGas or Boots and Coots, as the partial and out of context quote in the question would suggest. Quoted in its entirety, that passage states,

"In addition, based on dates of kill events identified by Blade, [Footnote omitted], the kill attempt on November 13, 2015 was the second kill attempt, so, based on this memo, *it is possible that another attempt was tried by SoCalGas or Boots and Coots*. [Footnote 16 states, "My review of records provided in response to SED DRs suggests that there *may* have been additional well kill attempts."] (Emphasis added.)

5. Produce all DOCUMENTS supporting your allegation that "another [kill] attempt was tried by SoCalGas or Boots and Coots" that is not described the Blade Report.

SED incorporates all of its objections in response to question 4 by reference here.

6. Please reference Chapter Eight, page 4, lines 3-19, which states: Finally, in a response to SED's data request DR 33, SoCalGas provided a Draft Timeline of Events. The entry for November 13, 2015 states:

November 13 - Tubing perforation activities performed and attempted stop the flow of gas by putting fluids down the well. During this operation, there was a release of a mist into the air. Based on the information at this time, it is not believed that these materials pose a threat to public health. Out of an abundance of caution, residents were notified to stay inside. Once determined that the mist was contained to our facility, residents were again notified that there was no reason to remain inside.

Office of Emergency Services and National Response Center were notified of the release. They were updated at 3:14 pm that flow was reduced.

SoCalGas provided no evidence to support the statements regarding reporting the incident or notifying the residents. This response was provided in the text of a supplemental response to the data request and is therefore not stamped with a SoCalGas bates number. No supporting documents were provided with the response.

- a) Identify all data requests in which SED requested that SoCalGas provide "evidence" or "supporting documents" to the support the draft entry for November 13, 2015, as excerpted above.
- b) Identify each question in which SED requested that SoCalGas provide "evidence" or "supporting documents" to the support the draft entry for November 13, 2015, as excerpted above.
- c) Identify the specific document to which "[t]his response" refers.
- d) Identify the question for which "[t]his response" was provided.

SED objects to this question as unduly burdensome because it is asking SED to produce documents that SoCalGas already has in its possession, and SoCalGas has the ability to access, read and understand the data that it requests. Notwithstanding this objection, Ms. Felts answers as follows.

Response to 6 a-d. I am not aware of any specific SED data request for the evidence or supporting documents. Since I came to this project in the fall of 2019, I am also not aware of any conversations, discussions, or other communications that may have occurred regarding evidence in this case prior to fall of 2019. My statement in Chapter Eight, page 4, lines 3-19 generally covers the entire collection of all data that was provided by SoCalGas to SED in this case and which I had reviewed at the time testimony was written.

- 7. Please reference Chapter Eight, page 4, lines 19-22, which states:

  <u>The Draft Timeline of Events provided to SED conflicts with the internal text message sent</u> to SoCalGas personnel on November 13, 2015 and states facts that were not included in the Standard Sesnon 25 Chronology of Events that appears within SoCalGas documents.
- a) Identify with specificity all facts that conflict between the Draft Timeline of Events and the "internal text message sent to SoCalGas personnel on November 13, 2015."
- b) In which "SoCalGas documents" are the "facts that were not included in the Standard Sesnon 25 Chronology of Events?"

Response to Questions 7 a and b: As mentioned in SED testimony, page 4, footnote 17, the draft timeline of events was provided in SoCalGas response to DR33. The full reference is DR33.01 SCG memo-Q12f amend 7-Dec-18.

Compare this statement in the Nov 13, 2015 Text message:

"During the repair process to mitigate the leak at the well head in Aliso Canyon oil was extracted and was vented into the atmosphere. There is an oily mist that may potentially be moving into the Porter Ranch area. Customer Service Field Distribution and Meter Reading employees who are or may be headed to work in the area have been given instructions to avoid the Porter

Ranch area until further notice. The Customer Contact Center has been notified, If an A-1 is issued in the area CSF employees are to take extreme caution when working the order."

To the Draft Timeline statement SoCalGas provided in the actual response to DR 33:

"November 13 - Tubing perforation activities performed and attempted stop the flow of gas by putting fluids down the well. During this operation, there was a release of a mist into the air. Based on the information at this time, it is not believed that these materials pose a threat to public health. Out of an abundance of caution, residents were notified to stay inside. Once determined that the mist was contained to our facility, residents were again notified that there was no reason to remain inside. Office of Emergency Services and National Response Center were notified of the release. They were updated at 3:14 pm that flow was reduced."

- 8. Please reference Chapter Eight, page 4, lines 23-25, which states: In conclusion, records suggest that a purposeful release of oil and gas occurred and that SoCalGas subsequently attempted to cover up the facts surrounding this release in violation of 451.
- a) Identify all "records" that "suggest" an attempt "to cover up the facts surrounding this release."
- b) Identify all facts that "suggest" an attempt "to cover up the facts surrounding this release."
- c) Identify all facts that support the alleged "violation of Section 451" referenced in the quote.

#### Response:

SED objects to Question 8 to the extent that subparts a, b, and c mischaracterize Ms. Felts' conclusion. The conclusion must be read in its entirety to be properly understood. Notwithstanding that objection, the following answers are provided.

a. A search of Boots & Coots, SoCalGas, and Haliburton daily reports, event records and emails and text messages on and after November 2015, as well as the CalGem data base regarding the Aliso 2015 SS-25 event, and reports to various regulatory agencies, turned up no records of the event as described in the Nov 13, 2015 text message sent from "777200585003" that reported "oil was extracted and was vented into the atmosphere." The consistent absence of this statement or anything similar to it in all other SoCalGas records suggests purposeful intent to avoid recording the incident.

Chapter Eight Violation 331 further discusses such records. For example, see Chapter Eight, page 2 line 20 to page 3 line 6, which states, "A review of emails and documents provided by SoCalGas in response to SED data requests did not turn up a description of this event. Specifically, there is no mention in either the SoCalGas daily report or the Boot(s) & Coots daily report for November 13, 2015. [Footnote 8, referencing Page 32 from AC\_CPUC\_SED\_DR\_16\_0000649-1026.Incident.Day and Report #20 from Boots&Coots.Daily Reports.] A search of the California Geologic Energy Management Division (CalGEM) [Footnote omitted] web site records for underground storage and the SS-25 well failure event turned up no mention or report on the incident even though it appears that a representative may have been present that day. [Footnote 10 referencing

AC CPUC SED DR 17 0002068.shallow.gas.recovery – this memo discusses other issues related to the SS-25 situation, but puts a representative at the well site on 11/13/2015.] There is another email message from C. Brandy to Bret Lane asking about the text message quoted above, but there are no email responses from Bret Lane regarding the subject. [Footnote 11, referencing AC CPUC SED DR 17 0002072].

- b. See response to 8.a and Chapter Eight, Violation 331.
- c. The facts supporting the safety violation of Public Utilities Code Section 451 include the purposeful extraction of oil and venting it into the atmosphere without pre-notice to the public and without further notice to the public that some exposure to oil might have occurred, as described in more detail in Chapter 8, violation 331.

# Governor's Office Emergency Services Hazardous Materials Spill Report

| <b>DATE</b> : 11/13/2015  |                                                                                                                      | RECEIVED BY          | <b>':</b>            | CONTRO         | L#:                              |
|---------------------------|----------------------------------------------------------------------------------------------------------------------|----------------------|----------------------|----------------|----------------------------------|
| <b>TIME:</b> 1334         |                                                                                                                      |                      |                      | Cal OES - 1    | 15-6708                          |
|                           |                                                                                                                      |                      |                      | NRC -          |                                  |
| 1.a. PERSON NOTI          | EVING Cal O                                                                                                          | FS.                  |                      |                |                                  |
| 1. NAME:                  | 2. AGENCY:                                                                                                           |                      | 3. PHONE#:           | 4. Ext:        | 5. PAG/CELL:                     |
| I. IVANIE.                | S CA Gas                                                                                                             |                      | 5. 1 HOπEπ.          | T. LAU.        | S. TAG/CELL.                     |
| 1.b. PERSON REPO          |                                                                                                                      | I (If different fr   | om abovo).           |                |                                  |
| 1. NAME:                  | 2. AGENCY:                                                                                                           |                      | 3. PHONE#:           | 4. Ext:        | 5. PAG/CELL:                     |
| 2. SUBSTANCE TY           |                                                                                                                      | •                    | 5. 1 HOπEπ.          | T. LAU.        | 3. TAG/CELL.                     |
|                           | r e:<br>>= <amount< td=""><td>Measure</td><td>c. TYPE:</td><td>d OTHED.</td><td>e. PIPELINE f. VESSEL</td></amount<> | Measure              | c. TYPE:             | d OTHED.       | e. PIPELINE f. VESSEL            |
| SUBSTANCE:                | -\Amouni                                                                                                             | measure              | C. TIFE.             | u. OTHEK.      |                                  |
|                           | Unk                                                                                                                  | Gal(s)               | DETROI ELI           | M.             | >= 300 Tons                      |
| 1. Oil - Crude =          | UIIK                                                                                                                 | Gal(s)               | PETROLEUM            | VI             | No No                            |
| Type                      |                                                                                                                      |                      |                      |                | 31                               |
| 2.                        |                                                                                                                      |                      |                      |                | No No                            |
| 3. –                      | D                                                                                                                    | 11.1.211             |                      |                | No No                            |
| g. DESCRIPTION:           |                                                                                                                      |                      |                      |                | material is flowing directly     |
|                           |                                                                                                                      |                      | and pooling at the b |                |                                  |
|                           |                                                                                                                      |                      |                      |                | o estimate of containment        |
|                           |                                                                                                                      |                      | andling the containr |                |                                  |
| h.                        |                                                                                                                      | WATER                | j. WATERWAY:         |                | RINKING WATER                    |
| STOPPAGE/CONTA            |                                                                                                                      |                      |                      | <b>IMP</b> A   | ACTED                            |
| No                        | No                                                                                                                   | )                    |                      |                |                                  |
| I. KNOWN IMPACT           | r No                                                                                                                 | one                  |                      |                |                                  |
| 3. a. INCIDENT LO         | CATION: 128                                                                                                          | 301 Tampa Ave, A     | Aliso Canyon Storag  | e Facility, V  | Vell #SS25                       |
| b. CITY:                  |                                                                                                                      | COUNTY:              | d. ZIP:              |                |                                  |
| Northridge                | Lo                                                                                                                   | s Angeles County     | 91326                | SOU            | TH COAST AQMD                    |
| 4. INCIDENT DESC          |                                                                                                                      | J                    |                      |                |                                  |
| a. DATE:                  |                                                                                                                      | TIME (Military):     | c. SITE:             | d. RF          | EPORTED CAUSE                    |
| 11/13/2015                |                                                                                                                      | 17                   | Other                | Unkn           |                                  |
|                           |                                                                                                                      |                      | Description for O    |                |                                  |
|                           |                                                                                                                      |                      | Similar to Tank Fa   |                |                                  |
| e. INJURIES               | <b>f</b> 1                                                                                                           | FATALITY             | g. EVACUATION        |                | LEANUP BY:                       |
| No                        | No                                                                                                                   |                      | No                   |                | rting Party                      |
| 6. NOTIFICATION           |                                                                                                                      |                      | 110                  | Керо           | iting I dity                     |
| a. ON SCENE:              | INFORMALI                                                                                                            | b. OTHER ON          | SCENE.               | c OTHE         | R NOTIFIED:                      |
| Other                     |                                                                                                                      | DOG                  | SCENE.               | c. Offic       | RIOTIFIED.                       |
| d. ADMIN. AGENC           | V. I as Ansolas (                                                                                                    |                      | o SEC                | ACENCY.        | LACoFD Health Haz-Mat            |
| Department                | 1: Los Angeles C                                                                                                     | nty rife             | e. SEC.              | AGENC I:       | LACOFD Hearm Haz-Mar             |
| f. ADDITIONAL CO          | HINTV.                                                                                                               |                      | σ ADM                | IN. AGENO      | ·V·                              |
| h. NOTIFICATION           |                                                                                                                      |                      | g. ADM               | III. AGEII     | 21.                              |
| DOG Unit: 2               | LIST:                                                                                                                | i RV                 | WQCB Unit:           |                |                                  |
| DOG CIRC. 2               |                                                                                                                      | I. IX                | 4                    |                |                                  |
| AA/CIPA DEG-OSPR I        | TSC RWOCE I                                                                                                          | IS EPA LISEWS AT     |                      | DPH-D O DO     | G, BSEE, Co/WP, Co/Hlth, Co/E-   |
| 1111 CO111, DI G-OBI K, L | .150, 101 QCD, C                                                                                                     | Jo Lift, Obi Wb, All | Hlth                 | ,, DO., DO     | 5, D5LL, C6/11, C6/11till, C6/E- |
|                           |                                                                                                                      |                      | DOG                  |                |                                  |
|                           |                                                                                                                      |                      |                      |                |                                  |
| Photo Attachment:         |                                                                                                                      |                      |                      |                |                                  |
|                           | **                                                                                                                   | *******              | No: 15-6708 ****     | ****           |                                  |
|                           | 10.00                                                                                                                | Control              | 110. 13-0/00         | a selferida de |                                  |

Created by: Warning Center on: 11/13/2015 01:34:07 PM Last Modified by: Warning Center on: 11/13/2015 01:51:43 PM

Ex. I-3, page 1 of 5

PrevDoc NextDoc

# **Governor's Office of Emergency Services Hazardous Material Spill Update**

|                                                                                                                                                                      |             | CONTRO                                                                 | OL#: 15-6708 NI            | RC# 1133370                                             |             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------------------------------------------------------|----------------------------|---------------------------------------------------------|-------------|
| NOTIFY DATE/TIME: 11/13<br>1334                                                                                                                                      | 3/2015 /    | RECEIVED BY:<br>OCCURENCE DA<br>11/13/2015/1317                        | те/тіме:                   | CITY/OP. AREA:<br>Northridge/Los Ange<br>SOUTH COAST AQ | •           |
| 1.a. PERSON NOTIFYING C                                                                                                                                              | Cal OES:    |                                                                        |                            |                                                         |             |
| AGENCY: S CA Gas                                                                                                                                                     |             |                                                                        |                            |                                                         |             |
| 1.b. PERSON REPORTING S                                                                                                                                              | SPILL (I    | f different from abo                                                   | ve):                       |                                                         |             |
| AGENCY:                                                                                                                                                              | (1          |                                                                        |                            |                                                         |             |
| SUBSTANCE TYPE:                                                                                                                                                      | 1easure     | c. TYPE:                                                               | d. OTHER:                  | e. PIPELINE                                             | f. VESSEL   |
| Amount                                                                                                                                                               |             |                                                                        |                            |                                                         | >= 300 Tons |
| <i>J</i> 1                                                                                                                                                           | Gal(s)      | PETROLEU                                                               | JM                         | No                                                      | No          |
| 2.<br>3.                                                                                                                                                             |             |                                                                        |                            | No<br>No                                                | No          |
| Orignal Description: During well k                                                                                                                                   | rill a mist | is releasing due to n                                                  | eccure material ic         | NO                                                      | No          |
| flowing directly into the atmost traveling Southwest in the air fr time, RP is handling the contain <b>Update(s):</b> 11/13/2015 01:56:5. No additional information. | rom the w   | vell head, no estimate<br>d clean up.                                  | of containment at t        | this                                                    |             |
| PERSON NOTIFYING Cal O<br>NAME:                                                                                                                                      | AGE         |                                                                        | PHONE#:                    | Ext:                                                    | PAG/CELL:   |
| <b>UPDATE QUANTITY</b>                                                                                                                                               | Measure     |                                                                        |                            |                                                         |             |
| Amount                                                                                                                                                               | ~ · · ·     |                                                                        |                            |                                                         |             |
| 1.                                                                                                                                                                   | Gal(s)      |                                                                        |                            |                                                         |             |
| 2.                                                                                                                                                                   |             |                                                                        |                            |                                                         |             |
| 3.                                                                                                                                                                   |             |                                                                        |                            |                                                         |             |
| 4.                                                                                                                                                                   |             |                                                                        |                            |                                                         |             |
| UPDATE KNOWN IMPACT                                                                                                                                                  | Γ:          |                                                                        |                            |                                                         |             |
| UPDATE CAUSE:                                                                                                                                                        |             |                                                                        |                            |                                                         |             |
| SITUATION UPDATE:                                                                                                                                                    |             |                                                                        |                            |                                                         |             |
| NRC report received: Wind spe<br>FAX NOTIFICATION LIST:                                                                                                              | ed is 20 N  | MPH, No additional i                                                   | nformation.                |                                                         |             |
| AA/CUPA, DFG-OSPR, DTSC, RWQCB, US EPA<br>ADMINISTERING AGENCY:<br>SECONDARY AGENCY:<br>ADDITIONAL COUNTIES:                                                         | Los Ange    | R RESOURCES BD, CDPH-D.C<br>les City Fire Department<br>Health Haz-Mat | ., DOG, BSEE, Co/WP, Co/HI | th, Co/E-Hlth <b>DOG</b>                                |             |
| ADDITIONAL ADMIN. AGENCY: DOG Unit:                                                                                                                                  |             |                                                                        |                            |                                                         |             |
| OTHER NOTIFIED; RWQCB Unit: CONFIRMATION REQUEST: FAX NOTIFICATION LIST:                                                                                             | 4           |                                                                        |                            |                                                         |             |
| ADMINISTERING                                                                                                                                                        |             |                                                                        |                            |                                                         |             |

https://w3.calema.ca.gov/operational/malhaz.nsf/f1841a103c102734882563e200760c4a/e6583981879f9ea688257efc0078913e? OpenDocument& Hig... 1/2 and 1/2

**AGENCY:** 

ADDITIONAL ADMIN.

**AGENCY:** 

**SECONDARY AGENCY:** 

**ADDITIONAL COUNTIES:** Cal GEM:

**RWQCB Unit:** 

PrevDoc NextDoc

SECONDARY AGENCY: ADDITIONAL COUNTIES: ADDITIONAL ADMIN. AGENCY:

OTHER NOTIFIED: RWQCB Unit:

CONFIRMATION REQUEST:

4

DOG Unit:

## Governor's Office of Emergency Services Hazardous Material Spill Update

CONTROL#: 15-6708 NRC#

| NOTIFY DATE                                              | / <b>TIME</b> : 11/                       | 13/2015 /                        | RECEIVED BY:                                                                                 |                       | CITY/OP. AREA:            |                          |
|----------------------------------------------------------|-------------------------------------------|----------------------------------|----------------------------------------------------------------------------------------------|-----------------------|---------------------------|--------------------------|
| 1334                                                     |                                           |                                  | OCCURENCE D                                                                                  | ATE/TIME:             | Northridge/Los Ange       | eles County              |
|                                                          |                                           |                                  | 11/13/2015/1317                                                                              |                       | SOUTH COAST AC            | OMD                      |
| 1.a. PERSON NO                                           | TIFYING                                   | Cal OES                          | <u> </u>                                                                                     |                       |                           | <u></u>                  |
| AGENCY: S CA                                             | Gas                                       |                                  |                                                                                              |                       |                           |                          |
| 1.b. PERSON RI                                           | EPORTING                                  | SPILL (                          | If different from ab                                                                         | ove):                 |                           |                          |
| AGENCY:                                                  |                                           |                                  |                                                                                              |                       |                           |                          |
| SUBSTANCE TY<br>a. SUBSTANCE:                            | YPE:<br>b. QTY:<br>Amount                 | Measure                          | c. TYPE:                                                                                     | d. OTHER:             | e. PIPELINE               | f. VESSEL<br>>= 300 Tons |
| 1.Oil - Crude Type                                       | e Unk                                     | Gal(s)                           | PETROLE                                                                                      | CUM                   | No                        | No                       |
| 2.                                                       |                                           |                                  |                                                                                              |                       | No                        | No                       |
| 3.                                                       |                                           |                                  | t is releasing due to j                                                                      |                       | No                        | No                       |
| No additional info; 11/13/2015 03:14 off site impact has | ormation.<br>4:36 PM - C<br>s occurred. I | Called to up No waterw OES OF AG | NRC report received:  odate status: The mis ays have been impact  SPILL UPDATE: ENCY: CA Gas | at flow has reduced a |                           | PAG/CELL:                |
| UPDATE QUAN                                              | TITY                                      | Measure                          | A Gas                                                                                        |                       |                           |                          |
| Amount                                                   |                                           |                                  |                                                                                              |                       |                           |                          |
| 1.                                                       |                                           | Gal(s)                           |                                                                                              |                       |                           |                          |
| 2.                                                       |                                           |                                  |                                                                                              |                       |                           |                          |
| 3.                                                       |                                           |                                  |                                                                                              |                       |                           |                          |
| 4.                                                       |                                           |                                  |                                                                                              |                       |                           |                          |
| UPDATE KNOV                                              | WN IMPAC                                  | CT:                              |                                                                                              |                       |                           |                          |
| UPDATE CAUS                                              | SE:                                       |                                  |                                                                                              |                       |                           |                          |
| SITUATION UP                                             |                                           |                                  |                                                                                              |                       |                           |                          |
| Called to update s                                       | tatus: The r                              | nist flow h                      | as reduced and no of                                                                         | f site impact has occ | curred. No waterways      | have been                |
| impacted. FAX NOTIFICATION                               | ON LIST:                                  |                                  |                                                                                              |                       |                           |                          |
| AA/CUPA, DFG-OSPR, DT<br>ADMINISTERING                   |                                           |                                  | IR RESOURCES BD, CDPH-D                                                                      |                       | lth, Co/E-Hlth <b>DOG</b> |                          |
| SECONDARY AGE                                            | NCY:                                      | LACoFI                           | Health Haz-Mat                                                                               |                       |                           |                          |

https://w3.calema.ca.gov/operational/malhaz.nsf/f1841a103c102734882563e200760c4a/c09f3e9554f5afda88257efc007fae44?OpenDocument&Highli... 1/2

**FAX NOTIFICATION** 

LIST:

**ADMINISTERING** 

**AGENCY:** 

ADDITIONAL ADMIN.

**AGENCY:** 

**SECONDARY AGENCY:** 

ADDITIONAL **COUNTIES:** 

Cal GEM:

**RWQCB** Unit:

Created by: Warning Center on: 11/13/2015 03:14:36 PM Last Modified by: Warning Center on: 11/13/2015 03:17:31 PM \*\*\*\*\*\*\*\*\*\* End of Form \*\*\*\*\*\*\*\*\*

Message

From: Koskie, W. Jeff [WKoskie@semprautilities.com]

Sent: 11/25/2015 3:11:09 PM

To: Epuna, Matthewson (matthewson.epuna@cpuc.ca.gov) [matthewson.epuna@cpuc.ca.gov]

Subject: RE: CPUC Data Request - Public Notification
Attachments: CPUC Data Request\_CommsTimeline.pdf

Importance: High

Matt.

Please replace first attachment with this PDF attachment that includes a prepared date.

Thanks,

Jeff

From: Koskie, W. Jeff

Sent: Wednesday, November 25, 2015 2:58 PM

**To:** Epuna, Matthewson (matthewson.epuna@cpuc.ca.gov) **Subject:** FW: CPUC Data Request - Public Notification

Importance: High

Matt.

Regarding your request to provide information demonstrating our public interaction tied to the Aliso Canyon, attached is a summary.

Please let me know if you have any questions, or if I can be of any further assistance.

Jeff

#### W. Jeff Koskie, ARM

Pipeline Safety and Compliance Manager

ML SC9334

Office Phone (661) 775-8770 Fax: (213) 244-8155

<mailto:wkoskie@semprautilities.com>





CPUC Data Request - Public Notifications - Prepared 11/25/2015

| DATE       | AUDIENCE | COMMUNICATION                                                           | DESCRIPTION                                                                       |
|------------|----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| 10/26/2015 | Customer | Meeting                                                                 | Neighborhood Town<br>hall Meeting                                                 |
| 10/27/2015 | Customer | Letter                                                                  | Customer Letter mailed to 8,000 customers, plus 1,200 of the 8,000 hand delivered |
| 10/27/2015 | Customer | Email                                                                   | Regional Public Affairs<br>Regular Updates Begin                                  |
| 10/28/2015 | Customer | Aliso web update                                                        | Posted on 10/28                                                                   |
| 10/30/2015 | Customer | Aliso web update                                                        | Posted on 10/30                                                                   |
| 10/30/2015 | Customer | Customer Letter<br>(English with translation referral)                  | Mailed 10/30 to 8,000 customers                                                   |
| 10/30/2015 | Customer | Customer FAQ English                                                    | Posted on website 10/30                                                           |
| 10/30/2015 | Customer | Aliso Canyon Customer<br>Letter #2                                      | Mailed and posted to the website on 10/30                                         |
| 10/30/2015 | Various  | Meeting                                                                 | Stakeholder Briefing                                                              |
| 10/31/2015 | Customer | Aliso Canyon Customer<br>Letter #2 (Armenian,<br>Korean, Spanish)       | Posted on the website on 10/31                                                    |
| 10/31/2015 | Customer | Customer Letters in Spanish, Korean, Armenian                           | Posted on website<br>10/31                                                        |
| 10/31/2015 | Customer | Customer Letter to inform customers about coiled tubing rig preparation | Delivered to 1,400<br>homes closest to the<br>facility                            |
| 11/2/2015  | Customer | Customer FAQ in<br>Korean, Armenian,<br>Spanish                         | Posted on website                                                                 |

| 11/2/2015  | Customer | Customer Letter                                             | Mailed to 8,100                     |
|------------|----------|-------------------------------------------------------------|-------------------------------------|
| 11/2/2015  | Customer | Air Sampling updates                                        | Began regular updates<br>on website |
| 11/02/2015 | Customer | Web Update                                                  | Posted on 11/2                      |
| 11/03/2015 | Customer | Web Update                                                  | Posted on 11/3                      |
| 11/4/2015  | Various  | Meeting                                                     | Neighborhood Town<br>hall Meeting   |
| 11/04/2015 | Customer | Web Update                                                  | Posted on 11/4                      |
| 11/05/2015 | Customer | Health Issues FAQ                                           | Posted on 11/5                      |
| 11/06/2015 | Customer | Web Update                                                  | Posted on 11/6                      |
| 11/07/2015 | Customer | Web Update                                                  | Posted on 11/7                      |
| 11/08/2015 | Customer | Web Update                                                  | Posted on 11/8                      |
| 11/09/2015 | Customer | Web Update                                                  | Posted on 11/9                      |
| 11/10/2015 | Customer | Web Update                                                  | Posted on 11/10                     |
| 11/11/2015 | Customer | Web Update                                                  | Posted on 11/11                     |
| 11/12/2015 | Customer | Customer Email – You<br>may smell odors or hear             | Deployed 11/12/15                   |
|            |          | noises                                                      |                                     |
| 11/12/2015 | Customer | Outbound Dial Message  - You may smell odors or hear noises | 11/12/2015                          |
| 11/12/2015 | Customer | Customer Update<br>BrochureEmail                            | Deployed and posted on 11/12/2015   |
| 11/12/2015 | Customer | Web Update                                                  | Posted on 11/12                     |
| 11/13/2015 | Customer | Web Update                                                  | Posted on 11/13                     |
| 11/13/2015 | Customer | Outbound Dial Message  – Stay Indoor Notification           | Deployed 11/13/2015                 |
| 11/13/2015 | Customer | Outbound Message All<br>Clear Notice                        | Deployed 11/13/2015                 |
| 11/14/2015 | Customer | Web Update                                                  | Posted on 11/14                     |
| 11/15/2015 | Customer | Web Update                                                  | Posted on 11/15                     |

| 11/15/2015 | Customer                     | Outbound Dial Message  - Will Resume Pumping | Deployed 11/15/2015                                                                              |
|------------|------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------|
| 11/16/2015 | Customer                     | Web Update                                   | Posted on 11/16                                                                                  |
| 11/17/2015 | Customer                     | Customer Update<br>Brochure                  | Posted 11/17/2015                                                                                |
| 11/17/2015 | Customer                     | Web Update                                   | Posted on 11/17                                                                                  |
| 11/18/2015 | Customer                     | Web Update                                   | Posted on 11/18                                                                                  |
| 11/18/2015 | Various                      | Meeting                                      | Briefing on Updates                                                                              |
| 11/19/2015 | Customer                     | Letter                                       | Letter addressed to Dr.<br>Steven Bohlen_DOGGR                                                   |
| 11/19/2015 | Customer                     | Web Update                                   | Posted on 11/19                                                                                  |
| 11/20/2015 | LA Dept. of Public<br>Health | Letter                                       | Letter addressed to<br>Angelo Bellomo County<br>of Los Angeles<br>Department of Public<br>Health |
| 11/20/2015 | Customer                     | Web Update                                   | Posted on 11/20                                                                                  |
| 11/21/2015 | Customer                     | Claims Flyer                                 | Created for deployment                                                                           |
| 11/21/2015 | Customer                     | Homeless Flyer                               | Created for deployment                                                                           |
| 11/21/2015 | Customer                     | Web Update                                   | Posted on 11/21                                                                                  |
| 11/22/2015 | Customer                     | Web Update                                   | Posted on 11/22                                                                                  |
| 11/23/2015 | External Stakeholders        | Aliso Canyon Storage<br>Facility Update      | Email deployed<br>11/23/2015                                                                     |
| 11/23/2015 | Customer                     | Letter                                       | One-month letter mailed to 8,000 customers                                                       |
| 11/23/2015 | Customer                     | Aliso Canyon Update<br>Email                 | Deployed 11/23/2015                                                                              |
| 11/24/2015 | Customer                     | Packet of communications                     | LACBOS 11/24/2015                                                                                |
| 11/24/2015 | Customer                     | Web Update                                   | Posted on 11/24                                                                                  |

#### Aliso Canyon Updates

### Updated November 14, 2015

#### **Background**

On October 23, SoCalGas crews discovered a leak at one of the natural gas storage wells at its Aliso Canyon storage field. In response, we activated the appropriate procedures to begin to address the leak.

We regret that the smell of the odorant in natural gas is unpleasant and that some people are sensitive to the odor, and we sincerely apologize for the annoyance and concern this odor is causing the neighboring communities. However, the leak does not pose an imminent threat to public safety. The well is located in an isolated, mountain area more than a mile away from and more than 1,200 feet higher than the closest home or public area. Scientists agree natural gas is not toxic and that its odorant is harmless at the minute levels at which it is added to natural gas. In outdoor locations such as this, natural gas quickly dissipates into the air, greatly reducing the possibility for ignition and further diluting the gas as it reaches the public. The human nose is amazingly sensitive and can detect the smell of the odorant at levels much lower than any level of concern.

We have assembled a world-class team of experts, and we are working as quickly as safety will allow to stop the leak. In addition, we are in regular communication with L.A. City and County Fire and Hazmat Departments, the L.A. County Department of Health, the California Division of Oil, Gas & Geothermal Resources, and the South Coast Air Quality Management District.

#### **Update on Activities - November 13**

- SoCalGas' team of well-management experts began the multi-day process of pumping fluids down the well to stop the flow of gas. (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf) The goal is to fill the well pipe with enough brine solution to outweigh the pressure of the gas coming up out of the ground. The brine solution will act like a plug. (See page three of our brochure (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf) for more information on this process.) Once the flow of natural gas is stopped, we will begin the effort to place a permanent seal at the bottom of the well pipe.
- We have some of the world's best experts advising us, and one of the reasons they are so successful is
  they are very cautious in their approach. The way we are addressing this incident is the best practice for
  situations such as this.
- As a result of this procedure which may take a few days, there is a potential for residents in the community
  to hear unusual noises and smell additional odors. In addition, some of the fluid being pumped down the
  well may come back up and spray into the air.
- On Friday, some of the brine solution did come back up, and it created a mist in the air over the facility. Out
  of an abundance of caution, we assumed the mist could contain oily residues (The storage field is depleted
  oil field.) and could travel beyond the facility. As a result, we immediately alerted the residents in nearby
  communities to stay indoors. As soon as we recognized the mist would not travel beyond the facility, we
  advised residents there was no reason to stay indoors.
- We conferred with the Health Department, the LA County Department of Health and HazMat and the SCAQMD. Our initial observations later in the day led us to believe the contents of the mist were likely mostly a mixture of mud and the brine solution; however, we have sent samples for analysis to be certain of its contents. When we receive the final report from the laboratory, we will make this information available.

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-14-15

- During these operations, we were monitoring and sampling the air both at the work site and down in the community. This information will be available as normal on our web site.
- As this work continues, SoCalGas will continue to monitor the well pressures 24/7 to ensure conditions remain safe.
- To update state and local officials and elected representatives on the progress and conditions at the site,
   SoCalGas participated in the regular, daily briefing with representatives of the local health, fire and hazmat agencies. We also informed community representatives about the issues related to the mist.
- A team of our environmental specialists and retained experts continued conducting daily air sampling and monitoring at several representative sites both within the leak site and the community. Although experts agree that natural gas is not toxic and that the levels of the odorant in the natural gas are too low to be a long-term health concern, we are continuing to conduct this sampling to provide the community with more information. The samples we are taking are in addition to those being taken by the SCAQMD. Air sampling results (http://www.socalgas.com/news-room/aliso-canyon-air-sample-results.shtml) from our tests are available at: http://www.socalgas.com/news-room/aliso-canyon-air-sample-results.shtml (http://www.socalgas.com/news-room/aliso-canyon-air-sample-results.shtml).
- We also continued meeting with neighbors at our public information booth, which we staff as weather permits. In the event of inclement weather, please remember, neighbors can check updates on this website, email us at AlisoCanyon@SoCalGas.com (mailto:AlisoCanyon@SoCalGas.com) or call us at (818) 435-7707. The booth is located near the gates of our facility at 12801 Tampa Avenue in Porter Ranch, and its hours (weather permitting) are from 10 a.m. to 5 p.m.

We apologize for how this incident may be affecting you, and we appreciate the community's ongoing patience as we work as quickly as safety will allow to resolve this situation. If you believe you have suffered harm or injury as a result of this incident, please complete this online form (http://socalgas.com/about-us/our-services/consulting/claims.shtml) or call 213-244-5151.

#### Submit a Claim

Fill Out an Online Form 2

Call Us: <u>248-12443524511</u> 5151)

For temporary housing accommodations call:

401149046808

6808)

#### Air Sample Results

<u>Learn More</u> per%2Fstandard)

#### **Customer Letters**

Download the Letter (English)

Descargue el documento (Español) 🗷

편지를 다운로드 (Korean) 囚

<u>բեռևել ևամակը (Armenian) 🗷</u>

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-14-15

Download and read customer letters from SoCalGas.

**View Customer Letters** 

#### FAQs & Fact Sheets

Information on health issues and Aliso Canyon.

Learn More A

### Health Issues Information (PDF)

SoCalGas Will Conduct Indoor Air Screenings Media Statement [2]

Download Health Department Fact Sheet A

Benzene Levels Fact Sheet 月

LADPH - Medical Provider Fact Sheet A

LADPH - Results of Air Monitoring A

Aliso Canyon Sampling Map A

#### Aliso Canyon Archive

View Previous Updates 2

### **Explore SoCalGas**

Site Map (https://spreview.socalgas.com/site-map) Accessibility Center

(https://spreview.socalgas.com/accessibility)

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-14-15

10/16/2020

Unclaimed Property Rates & Regulatory

(https://spreview.socalgas.com/unclaimed- (https://spreview.socalgas.com/regulatory)

property) Newsroom

(https://spreview.socalgas.com/newsroom)

Careers (https://spreview.socalgas.com/careers) More Languages

(https://spreview.socalgas.com/more-languages)

Newsletter (https://www.socalgas.com/preference- About Us (https://spreview.socalgas.com/about-us)

center)

#### Connect with Us\*

(https://facebook.com/soutilps:s/youtube.com/soutiltps:s//twitter.com/socalhtaps://instagram.com/s

(https://www.linkedin.com/company/southerncalifornia-gas-company)

Privacy Notice Privacy Policy

(https://spreview.socalgas.com/privacy-notice) (https://spreview.socalgas.com/privacy-policy)

Terms & Conditions Energy Usage Request

(https://spreview.socalgas.com/terms-and- (https://www.socalgas.com/for-your-

conditions) business/energy-savings/energy-usage-requests)

\*By clicking these links, you will leave socalgas.com and transfer directly to the website of a third party which is not part of Southern California Gas Company. The Terms and Conditions and Privacy Policy on that website will apply.

Southern California Gas Company is a subsidiary of Sempra Energy®. © 1998 - 2019 Southern California Gas Company. SoCalGas® is a registered trademark of Southern California Gas Company. The trademarks used herein are the property of their respective owners. All rights reserved.

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-14-15

#### Aliso Canyon Updates

### Updated November 15, 2015

#### **Background**

On October 23, SoCalGas crews discovered a leak at one of the natural gas storage wells at its Aliso Canyon storage field. In response, we activated the appropriate procedures to begin to address the leak.

We regret that the smell of the odorant in natural gas is unpleasant and that some people are sensitive to the odor, and we sincerely apologize for the annoyance and concern this odor is causing the neighboring communities. However, the leak does not pose an imminent threat to public safety. The well is located in an isolated, mountain area more than a mile away from and more than 1,200 feet higher than the closest home or public area. Scientists agree natural gas is not toxic and that its odorant is harmless at the minute levels at which it is added to natural gas. In outdoor locations such as this, natural gas quickly dissipates into the air, greatly reducing the possibility for ignition and further diluting the gas as it reaches the public. The human nose is amazingly sensitive and can detect the smell of the odorant at levels much lower than any level of concern.

We have assembled a world-class team of experts, and we are working as quickly as safety will allow to stop the leak. In addition, we are in regular communication with L.A. City and County Fire and Hazmat Departments, the L.A. County Department of Health, the California Division of Oil, Gas & Geothermal Resources, and the South Coast Air Quality Management District.

#### **Update on Activities - November 14**

- SoCalGas' team of well-management experts resumed the multi-day process of pumping fluids down the well to stop the flow of gas. (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf) The goal is to fill the well pipe with enough brine solution to outweigh the pressure of the gas coming up out of the ground. The brine solution will act like a plug. (See page three of our brochure (http://www.socalgas.com/documents/news-room/aliso-canyon-recent-activity.pdf) for more information on this process.) Once the flow of natural gas is stopped, we will begin the effort to place a permanent seal at the bottom of the well pipe.
- We have some of the world's best experts advising us, and one of the reasons they are so successful is
  they are very cautious in their approach. The way we are addressing this incident is the best practice for
  situations such as this.
- As a result of this procedure which may take a few days, there is a potential for residents in the community
  to hear unusual noises and smell additional odors. In addition, some of the fluid being pumped down the
  well may come back up and spray into the air.
- On Friday, some of the brine solution did come back up, and it created a mist in the air over the facility. Out
  of an abundance of caution, we assumed the mist could contain oily residues (The storage field is a
  depleted oil field.) and could travel beyond the facility. As a result, we immediately alerted the residents in
  nearby communities to stay indoors. As soon as we recognized the mist would not travel beyond the facility,
  we advised residents there was no reason to stay indoors.
- We sent samples of the liquid that generated the mist to an outside laboratory for analysis. The laboratory analysis determined that the liquid is non hazardous.
- During these operations, we were monitoring and sampling the air both at the work site and down in the community. This information will be available as normal on our web site.

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-15-15

- As this work continues, SoCalGas will continue to monitor the well pressures 24/7 to ensure conditions remain safe.
- To update state and local officials and elected representatives on the progress and conditions at the site, SoCalGas participated in the regular, daily briefing with representatives of the local health, fire and hazmat agencies. We also informed community representatives about the issues related to the mist.
- A team of our environmental specialists and retained experts continued conducting daily air sampling and
  monitoring at several representative sites both within the leak site and the community. Although experts
  agree that natural gas is not toxic and that the levels of the odorant in the natural gas are too low to be a
  long-term health concern, we are continuing to conduct this sampling to provide the community with more
  information. The samples we are taking are in addition to those being taken by the SCAQMD. Air sampling
  results (/newsroom/aliso-canyon-updates/air-sample-results) from our tests are available at:
  http://www.socalgas.com/news-room/aliso-canyon-air-sample-results (/newsroom/aliso-canyon-updates/air-sample-results)
- We also continued meeting with neighbors at our public information booth, which we staff as weather permits. In the event of inclement weather, please remember, neighbors can check updates on this website, email us at AlisoCanyon@SoCalGas.com (mailto:AlisoCanyon@SoCalGas.com) or call us at (818) 435-7707. The booth is located near the gates of our facility at 12801 Tampa Avenue in Porter Ranch, and its hours (weather permitting) are from 10 a.m. to 5 p.m. Today we will have an additional public information booth at Holly Bernson Park at Sesnon Blvd. and Porter Ranch Drive, and its hours are from 10:00 a.m. to 1:00 p.m.

We apologize for how this incident may be affecting you, and we appreciate the community's ongoing patience as we work as quickly as safety as possible to resolve this situation. If you believe you have suffered harm or injury as a result of this incident, please complete this online form (/about-us/claims) or call 213-244-5151.

#### Submit a Claim

Fill Out an Online Form

Call Us: <u>248-1244351-51</u> 5151) For temporary housing accommodations call: <u>404-149746808</u> 6808)

#### Air Sample Results

<u>Learn More</u> per%2Fstandard)

#### **Customer Letters**

Download the Letter (English)

Descargue el documento (Español) 🖹

<u>편지를 다운로드 (Korean)</u> 🗗

բեռևել ևամակը (Armenian) 🗷

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-15-15

Download and read customer letters from SoCalGas.

#### **View Customer Letters**

#### FAQs & Fact Sheets

Information on health issues and Aliso Canyon.

Learn More A

### Health Issues Information (PDF)

SoCalGas Will Conduct Indoor Air Screenings Media Statement A

Download Health Department Fact Sheet 🖹

Benzene Levels Fact Sheet A

LADPH - Medical Provider Fact Sheet 🗷

LADPH - Results of Air Monitoring A

Aliso Canyon Sampling Map A

#### Aliso Canyon Archive

**View Previous Updates** 

### Explore SoCalGas

Site Map (https://spreview.socalgas.com/site-map) Accessibility Center

(https://spreview.socalgas.com/accessibility)

Unclaimed Property Rates & Regulatory

(https://spreview.socalgas.com/unclaimed- (https://spreview.socalgas.com/regulatory)

property) Newsroom

(https://spreview.socalgas.com/newsroom)

Careers (https://spreview.socalgas.com/careers) More Languages

(https://spreview.socalgas.com/more-languages) -

https://spreview.socalgas.com/newsroom/aliso-canyon-updates-11-15-15

Newsletter (https://www.socalgas.com/preference- About Us (https://spreview.socalgas.com/about-us)

center)

#### Connect with Us\*

(https://facebook.com/softetigs:sy/twitter.com/socalidaps://youtube.com/softetigs:sy/instagram.com/s

(https://www.linkedin.com/company/southerncalifornia-gas-company)

Privacy Notice Privacy Policy

(https://spreview.socalgas.com/privacy-notice) (https://spreview.socalgas.com/privacy-policy)

Terms & Conditions Energy Usage Request

(https://spreview.socalgas.com/terms-and- (https://www.socalgas.com/for-your-

conditions) business/energy-savings/energy-usage-requests)

\*By clicking these links, you will leave socalgas.com and transfer directly to the website of a third party which is not part of Southern California Gas Company. The Terms and Conditions and Privacy Policy on that website will apply.

Southern California Gas Company is a subsidiary of Sempra Energy®. © 1998 - 2019 Southern California Gas Company. SoCalGas® is a registered trademark of Southern California Gas Company. The trademarks used herein are the property of their respective owners. All rights reserved.

#### Message

From: Koskie, W. Jeff [WKoskie@semprautilities.com]

Sent: 11/17/2015 3:43:52 PM

To: Solis, Maria [Maria.Solis@cpuc.ca.gov]; Epuna, Matthewson [matthewson.epuna@cpuc.ca.gov]

CC: Gonzalez, Hector O [HGonzalez2@semprautilities.com]; Smith, Paul [PSmith1@semprautilities.com]; Bauer, Troy A.

[TBauer@semprautilities.com]

Subject: RE: Underground Storage facilities - CPUC Data Request Response - Aliso Canyon Storage Facility
Attachments: Attachment A- Mud Mixture - 11-13-15.pdf; Attachment B - Vacuum Truck Contents 11-13-15.pdf

Maria.

Attached are requested documents.

Please let me know if you have any questions, or if I can be of any further assistance.

Jeff

From: Solis, Maria [mailto:Maria.Solis@cpuc.ca.gov]

**Sent:** Monday, November 16, 2015 1:33 PM **To:** Koskie, W. Jeff; Epuna, Matthewson

Cc: Gonzalez, Hector O; Smith, Paul; Bauer, Troy A.

Subject: RE: Underground Storage facilities - CPUC Data Request Response - Aliso Canyon Storage Facility

Jeff, based on the statement highlighted below from your timeline, can you forward the test results and the conclusions of the test results, thank you, Maria

November 14 – Evaluating the well conditions, preparing the site and determining the best strategy for our continued efforts to stop the flow of gas. Representatives from the L.A. County Health & Hazmat have inspected the site today and yesterday and observed our containment procedures. Collected samples of the mud and liquid from yesterday's release and having it analyzed and expect results tonight. At 1:05 pm OES and NRC were notified of release containment and minor additional release of crude oil at 4:30 am.

### Have a Blessed Day and be SAFE, Sincerely, Maria

Maria C. Solis, P.E.

Senior Utilities Engineer (Specialist)

California Public Utilities Commission

Safety and Enforcement Division

Gas Engineering and Compliance Section

180 Promenade Circle, Suite 115

Below are responses to final group of initial data request items.

Please let me know if you have any questions, or if I can be of any further assistance.

Jeff

1. Time line that describes all the events to date, including initial response, recovery and mitigation.

Timeline is attached.

2. Were any customers affected by this incident as far as delivery of gas? If so, how were they effected and how was the impact mitigated?

Delivery of gas to customers has not been impacted.

3. Estimate of product released to date, both to the atmosphere and underground.

No estimate at this time. While we are prioritizing the prompt resolution of the leak, we are in the process of determining appropriate estimation methodologies. We continue to gather and preserve

| operational, well, air and subsurface data that may be used to evaluate the magnitude and character of the release.                                                                                                                                                                                                                                                                                                                                                                              |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4. Were any shallow groundwater aquifers or aquitards affected by the incident? If so were the local drinking water supply utilities notified? If so when and who was notified?                                                                                                                                                                                                                                                                                                                  |
| No indication at this point that any shallow groundwater aquifers or aquitards have been affected by the incident. We will be able to further assess well after control to determine if there is any potential impact.                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5. What is the initial proposed future mitigation to this type of incident.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Our first priority is to stop the flow of gas using standard practices that ensure continued safety, offer the greatest likelihood of a prompt resolution and are appropriately tailored to the individual circumstances of this leak. Once we have the current incident under control, SoCalGas will evaluate whether anything can be done to mitigate the possibility of such incidents in the future. This evaluation will likely be part of our root cause analysis of the current incident. |
| ratare. The sychological will interface but took occurs alleryons of the carroin moracin.                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 6. Estimated time to correct the issue.                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Well kill efforts to stop the flow of gas continue today. No specific timeline for completion has been determined.                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 7. Already answered and submitted                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9. Any injuries or notential horm to applement as the nublic                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 8. Any injuries or potential harm to employees or the public.  None specifically connected to incident. However, one employee had a finger injuried when door                                                                                                                                                                                                                                                                                                                                    |

slammed shut in office at Aliso, away from and unrelated to well site.

| 9. Already answered and submitted                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10. Already answered and submitted                                                                                                                               |
| 11. Notification to date if any to local residents concerning the incident.  Please refer to attached timeline which includes resident notification information. |
| 12. Already answered and submitted                                                                                                                               |
| 13. Estimate of the cost to mitigate the incident. To be determined                                                                                              |
| 14 Any initial failure investigation findings to date                                                                                                            |

We know the well has a casing leak. Until the leak is stopped and the well is inspected, we cannot determine the extent or the cause of the failure. Root cause investigation will commence at that time.

# 15. Documentation of any safety meetings or safety tailgate meetings that have occurred to date.

Our contracted well control experts have a safety coordinator on site. All persons entering the site are required to attend a tailgate safety meeting every day. Every morning, before any activities, SoCalGas safety professionals provide safety updates to crews. We will provide a supplemental update on specifics tomorrow.

#### W. Jeff Koskie, ARM

Pipeline Safety and Compliance Manager
ML SC9334

Office Phone (661) 775-8770 Fax: (213) 244-8155 <mailto:wkoskie@semprautilities.com>

From: Solis, Maria

Sent: Friday, November 13, 2015 4:41 PM

To: 'Bauer, Troy A.'; Smith, Paul; 'GLaFevers@semprautilities.com'

Cc: Epuna, Matthewson; Jeff Koskie

Subject: RE: Underground Storage facilities

Hello Paul, Troy, and Glenn, I've been asked by the LA CPUC office to assist with the CPUC's investigation of the incident reported below. The following is a list of my initial data requests. Thank you in advance for your prompt reply. I'm requesting a 48 hour return on this initial data request. I'm assuming based on your emergency management plan that all of these items have already been prepared. If any of the items are in draft form at this juncture in your investigation please forward them under the confidentiality order asap. If you can't respond to all the data requests within 48 hours of this email please let me know when the data request will be available.

- 1. Time line that describes all the events to date, including initial response, recovery and mitigation.
- 2. Were any customers affected by this incident as far as delivery of gas? If so, how were they effected and how was the impact mitigated?
- 3. Estimate of product released to date, both to the atmosphere and underground.

- 4. Were any shallow groundwater aquifers or aquitards affected by the incident? If so were the local drinking water supply utilities notified? If so when and who was notified?
- 5. What is the initial proposed future mitigation to this type of incident.
- Estimated time to correct the issue.
- 7. Emergency response team that was put in place as a result of the incident.
- 8. Any injuries or potential harm to employees or the public.
- 9. Sections of your storage facility emergency plan/procedures/standards that were initiated to respond to the incident.
- 10. A recent published copy of the Aliso Canyon emergency response plan and any other additional emergency response plans/procedures/standards that specifically call out gas storage wells.
- 11. Notification to date if any to local residents concerning the incident.
- 12. Notification to date if any to local first responders.
- 13. Estimate of the cost to mitigate the incident.
- 14. Any initial failure investigation findings to date.
- 15. Documentation of any safety meetings or safety tailgate meetings that have occurred to date.

# Have a Blessed Day and be SAFE, Sincerely, Maria

Maria C. Solis, P.E.
Senior Utilities Engineer (Specialist)
California Public Utilities Commission
Safety and Enforcement Division
Gas Engineering and Compliance Section
180 Promenade Circle, Suite 115
Sacramento, CA 95834

Office (916)928-2534, Fax (916) 928-6880

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.

This email originated outside of Sempra Energy. Be cautious of attachments, web links, or requests for information.



# Calscience



# WORK ORDER NUMBER: 15-11-1098

The difference

AIR SOIL WATER MARINE CHEMISTRY

Analytical Report For

Client: Southern California Gas Company

Client Project Name: TS2015-C013 / Aliso Canyon
Attention: Sharid Razzak
M.b. 723B

P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

amande Porter

Approved for release on 11/16/2015 by: Amanda Porter Project Manager

ResultLink )

Email your PM )



Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

CA FLAP ID: 2944 | ACLASS DID ELAP ID: ADE 1664 USO/IEC 17025 20051 | CSDLAC ID: 10109



# Contents

| Client F | roject Name: | TS2015-C013 / Aliso Canyon                                                                                                                                                                        |    |
|----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Work O   | rder Number: | 15-11-1098                                                                                                                                                                                        |    |
|          |              |                                                                                                                                                                                                   |    |
| 1        | Work Or      | rder Narrative                                                                                                                                                                                    | 3  |
| 2        | Client S     | ample Data                                                                                                                                                                                        | 4  |
|          | 2.1 EPA      | A 8015B (M) C6-C44 (Solid)                                                                                                                                                                        | 4  |
|          | 2.2 EPA      | A 8015B (M) C6-C44 (Aqueous).                                                                                                                                                                     | 7  |
|          | 2.3 EPA      | A 6010B ICP Metals (Solid)                                                                                                                                                                        | 5  |
|          | 2.4 EPA      | A 6010B ICP Metals (Aqueous).                                                                                                                                                                     | 12 |
|          | 2.5 EPA      | A 7470A Mercury (Aqueous).                                                                                                                                                                        | 14 |
|          | 2.6 EPA      | A 7471A Mercury (Solid)                                                                                                                                                                           | 15 |
|          |              |                                                                                                                                                                                                   | 16 |
|          | 2.8 Con      | mbined Inorganic Tests, 16                                                                                                                                                                        | 23 |
| 3        | Quality (    | Control Sample Data                                                                                                                                                                               | 24 |
|          | 3.1 MS       | /MSD                                                                                                                                                                                              | 24 |
|          | 3.2 San      | mple Duplicate                                                                                                                                                                                    | 31 |
|          | 3.3 LCS      | S/LCSD                                                                                                                                                                                            | 36 |
| 4        | Sample       | Analysis Summary                                                                                                                                                                                  | 45 |
| 5        | Glossan      | A 8260B Volatile Organics (Solid).  mbined Inorganic Tests.  Control Sample Data.  /MSD.  mple Duplicate.  S/LCSD.  Analysis Summary.  y of Terms and Qualifiers.  f-Custody/Sample Receipt Form. | 46 |
| 6        | Chain-o      | f-Custody/Sample Receipt Form                                                                                                                                                                     | 47 |



#### Work Order Narrative

Work Order: 15-11-1098 Page 1 of 1

#### Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/14/15. They were assigned to Work Order 15-11-1098.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

#### **Holding Times:**

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

#### **Quality Control:**

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

#### Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

#### **Additional Comments:**

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

十



Los Angeles, CA 90051-1249

## **Analytical Report**

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Date Received: Work Order: Preparation: Method:

Units:

11/14/15 15-11-1098 EPA 3550B

mg/kg

EPA 8015B (M)

Project: TS2015-C013 / Aliso Canyon

Page 1 of 3

| Client Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix                   | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|--------------------------|--------------|------------------|-----------------------|-------------|
| Well Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15-11-1098-2-A          | 11/13/15<br>18:40      | Sludge                   | GC 47        | 11/14/15         | 11/14/15<br>13:10     | 151114B02   |
| Parameter Parame | 0                       | Result                 | RL                       |              | DF               | Qua                   | alifiers    |
| C6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | an one                  | ND                     | 5.0                      |              | 1.00             |                       |             |
| C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C 9 90                  | ND                     | 5.0                      |              | 1.00             |                       |             |
| C8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ma con Ma               | ND                     | 5.0                      |              | 1.00             |                       |             |
| C9-C10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10 10 10                | ND                     | 5.0                      |              | 1.00             |                       |             |
| C11-C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | So 50 80                | ND                     | 5.0                      |              | 1.00             |                       |             |
| C13-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Compliance Audit of the | ND                     | 5.0                      |              | 1.00             |                       |             |
| C15-C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10/4 1/4                | CMD C                  | 5.0                      |              | 1.00             |                       |             |
| S17-C18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ND                     | 5.0                      |              | 1.00             |                       |             |
| C19-C20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | NO.                    | 5.0                      |              | 1.00             |                       |             |
| C21-C22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 164 66                 | 5.0                      |              | 1_00             |                       |             |
| 023-024                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ND W                   | A                        |              | 1.00             |                       |             |
| C25-C28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ND                     | 5.0<br>5.0<br>5.0<br>5.0 |              | 1.00             |                       |             |
| 29-032                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | ND                     | C 95.0                   |              | 1.00             |                       |             |
| C33-C36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ND                     | 5.0                      | Ow.          | 1.00             |                       |             |
| C37-C40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ND                     | 8:0                      | Q.           | 1.00             |                       |             |
| C41-C44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | ND                     | 8.0<br>5.0               | no no        | 1.00             |                       |             |
| C6-C44 Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | ND                     | 5.0                      | J. A.        | 1.00             |                       |             |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Rec. (%)               | Col                      | ntrol Limits | Qualifiers       |                       |             |
| n-Octacosane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                         | 107                    | 61-                      | 145          | 60.0             |                       |             |

RL: Reporting Limit.



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units:

11/14/15 15-11-1098

**EPA 3550B** 

EPA 8015B (M)

mg/kg

Project: TS2015-C013 / Aliso Canyon

Page 2 of 3

| Client Sample Number | Lab Sample<br>Number      | Date/Time<br>Collected | Matrix                                                                          | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|---------------------------|------------------------|---------------------------------------------------------------------------------|--------------|------------------|-----------------------|-------------|
| Junction SS25&9      | 15-11-1098-3-A            | 11/13/15<br>18:50      | Sludge                                                                          | GC 47        | 11/14/15         | 11/14/15<br>13:28     | 151114B02   |
| Parameter            | 0                         | Result                 | RL                                                                              |              | DF               | Qua                   | lifiers     |
| C6                   | an ope                    | ND                     | 10                                                                              |              | 2,00             |                       |             |
| C7                   | 0 9 9                     | ND                     | 10                                                                              |              | 2.00             |                       |             |
| C8                   | ma on Ma                  | 12                     | 10                                                                              |              | 2,00             |                       |             |
| C9-C10               | 10 10 10                  | 75                     | 10                                                                              |              | 2.00             |                       |             |
| C11-C12              | Compliance Assub          | 130                    | 10                                                                              |              | 2.00             |                       |             |
| C13-C14              | Cornolistice Audir of the | 120                    | 10                                                                              | V.           | 2.00             |                       |             |
| C15-C16              | 10/10                     | 68                     | 10                                                                              |              | 2.00             |                       |             |
| G17-G18              |                           | Q ATTO                 | 10                                                                              |              | 2.00             |                       |             |
| C19-C20              |                           |                        |                                                                                 |              | 2.00             |                       |             |
| C21-C22              |                           | 28 0                   | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>1 |              | 2.00             |                       |             |
| C23-C24              |                           | 18                     | 0 10                                                                            |              | 2.00             |                       |             |
| C25-C28              |                           | 22                     | Oc 40 10                                                                        |              | 2.00             |                       |             |
| C29-C32              |                           | 37                     | C 900                                                                           |              | 2.00             |                       |             |
| C33-C36              |                           | 35                     | 00 10                                                                           | Ow           | 2.00             |                       |             |
| C37-C40              |                           | 32                     | 76<br>10                                                                        | Q.           | 2.00             |                       |             |
| C41-C44              |                           | 22                     | 10                                                                              | mana .       | 2.00             |                       |             |
| C6-C44 Total         |                           | 750                    | 5.0                                                                             | The Peral    | 1.00             |                       |             |
| Surrogate            |                           | Rec. (%)               | Co                                                                              | ntrol Limits | Qualifiers       |                       |             |
| n-Octacosane         |                           | 109                    | 61-                                                                             | 145          | 60,0             |                       |             |

RL: Reporting Limit.



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15 Work Order: 15-11-1098

Preparation: **EPA 3550B** 

Method: EPA 8015B (M)

Units: mg/kg Page 3 of 3

| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix                                                                          | Instrument     | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|----------------------|------------------------|---------------------------------------------------------------------------------|----------------|------------------|-----------------------|-------------|
| Method Blank         | 099-15-490-1869      | N/A                    | Solid                                                                           | GC 47          | 11/14/15         | 11/14/15<br>12:53     | 151114B02   |
| Parameter            | 0                    | Result                 | RI                                                                              |                | DF               | Qua                   | lifiers     |
| C6                   | an ope               | ND                     | 5.                                                                              | )              | 1.00             |                       |             |
| C7                   | C 9 90               | ND                     | 5.                                                                              | )              | 1.00             |                       |             |
| C8                   | ma en Ma             | ND                     | 5.0                                                                             | )              | 1.00             |                       |             |
| C9-C10               | Cond Section Session | ND                     | 5,                                                                              | 2              | 1.00             |                       |             |
| C11-C12              | Go So 62             | ND                     | 5.0                                                                             |                | 1.00             |                       |             |
| C13-C14              | 4 8 3                | ND ND                  | 5.0                                                                             | )              | 1.00             |                       |             |
| C15-C16              | TON TO               | CIND                   | 5.                                                                              | )              | 1.00             |                       |             |
| G17-G18              | 1                    | ND                     | 5.                                                                              | )              | 1.00             |                       |             |
| C19-C20              |                      | NO C                   | 5.0                                                                             | )              | 1.00             |                       |             |
| C21-C22              |                      | NDC 2                  | 5.                                                                              | )              | 1.00             |                       |             |
| 023-024              |                      | ND W                   | 0, 5.                                                                           | )              | 1.00             |                       |             |
| C25-C28              |                      | ND 6                   | 5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5.<br>5 | )              | 1.00             |                       |             |
| C29-C32              |                      | ND                     | C 95                                                                            | )              | 1.00             |                       |             |
| C33-C36              |                      | ND                     | 90 5                                                                            | O <sub>v</sub> | 1.00             |                       |             |
| C37-C40              |                      | ND                     | 8                                                                               | Shane          | 1.00             |                       |             |
| C41-C44              |                      | ND                     | 5.                                                                              | 100 To         | 1.00             |                       |             |
| C6-C44 Total         |                      | ND                     | 5.                                                                              | اله م          | 1.00             |                       |             |
| Surrogate            |                      | Rec. (%)               | Co                                                                              | ontrol Limits  | Qualifiers       |                       |             |
| n-Octacosane         |                      | 103                    | 61                                                                              | -145           | 60               |                       |             |

RL: Reporting Limit.



Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units:

11/14/15 15-11-1098

**EPA 3510C** 

EPA 8015B (M) ug/L

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

| Client Sample Number | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix  | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|-------------------------|------------------------|---------|--------------|------------------|-----------------------|-------------|
| Equipment Blank      | 15-11-1098-1-C          | 11/13/15<br>18:25      | Aqueous | GC 47        | 11/14/15         | 11/14/15<br>13:45     | 151114B01   |
| Parameter            | 0                       | Result                 | RL      |              | DF               | Qua                   | alifiers    |
| C6                   | an one                  | ND                     | 50      |              | 1.00             |                       |             |
| C7                   | C 9 9                   | ND                     | 50      |              | 1.00             |                       |             |
| C8                   | ma en Ma                | ND                     | 50      |              | 1.00             |                       |             |
| C9-C10               | 10 10 10                | ND                     | 50      |              | 1.00             |                       |             |
| C11-C12              | Co 50 %                 | ND                     | 50      |              | 1.00             |                       |             |
| C13-C14              | Comoliance Audin of the | ND.                    | 50      |              | 1.00             |                       |             |
| C15-C16              | 10/2 of 10              | CIND                   | 50      |              | 1.00             |                       |             |
| G17-G18              |                         | O NID                  | 50      |              | 1.00             |                       |             |
| C19-C20              |                         | ND -                   | 50      |              | 1.00             |                       |             |
| C21-C22              |                         | NDC S                  | S 50    |              | 1.00             |                       |             |
| C23-C24              |                         | ND W                   | O. 50   |              | 1.00             |                       |             |
| C25-C28              |                         | ND                     | CO 50   |              | 1.00             |                       |             |
| C29-C32              |                         | ND                     | C 950   |              | 1.00             |                       |             |
| C33-C36              |                         | ND                     | 0 50    | Ow           | 1.00             |                       |             |
| C37-C40              |                         | ND                     | 80      | Q.           | 1.00             |                       |             |
| C41-C44              |                         | ND                     | 50      | mana         | 1.00             |                       |             |
| C6-C44 Total         |                         | ND                     | 100     | 16 8         | 1.00             |                       |             |
| Surrogate            |                         | Rec. (%)               | Co      | ntrol Limits | Qualifiers       |                       |             |
| n-Octacosane         |                         | 90                     | 68-     | 140          | 66.0             |                       |             |

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order:

Preparation:

Method: Units:

15-11-1098 **EPA 3510C** 

11/14/15

EPA 8015B (M)

ug/L

Project: TS2015-C013 / Aliso Canyon

Page 2 of 2

| Client Sample Number | Lab Sample<br>Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date/Time<br>Collected | Matrix                                 | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|----------------------------------------|--------------|------------------|-----------------------|-------------|
| Method Blank         | 099-15-498-310                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                    | Aqueous                                | GC 47        | 11/14/15         | 11/14/15<br>12:35     | 151114801   |
| <u>Parameter</u>     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Result                 | RL                                     |              | DF               | Qua                   | alifiers    |
| C6                   | Cond Section Ses Up of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                     | 50                                     |              | 1.00             |                       |             |
| C7                   | C 9 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                     | 50                                     |              | 1.00             |                       |             |
| C8                   | ma Bartha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND                     | 50                                     |              | 1.00             |                       |             |
| C9-C10               | 10 00 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND                     | 50                                     |              | 1.00             |                       |             |
| C11-C12              | Co 50 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND                     | 50                                     |              | 1.00             |                       |             |
| C13-C14              | A 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND ND                  | 50                                     |              | 1.00             |                       |             |
| C15-C16              | Cond Standard Standar | ND ND                  | 50                                     |              | 1.00             |                       |             |
| G17-G18              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | O ND                   | 50                                     |              | 1.00             |                       |             |
| C19-C20              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NO C                   | 50                                     |              | 1.00             |                       |             |
| C21-C22              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | winter of              | 50                                     |              | 1_00             |                       |             |
| C23-C24              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND W                   | 50<br>50<br>50<br>50<br>50<br>50<br>50 |              | 1.00             |                       |             |
| C25-C28              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                     | Oc 4/0 50                              |              | 1.00             |                       |             |
| C29-C32              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                     | 50<br>50<br>50<br>50<br>50             |              | 1.00             |                       |             |
| C33-C36              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                     | % 50°                                  | Ow.          | 1.00             |                       |             |
| C37-C40              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                     |                                        |              | 1.00             |                       |             |
| C41-C44              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                     | 50                                     | no nor       | 1.00             |                       |             |
| C6-C44 Total         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                     | 100                                    | 16.          | 1.00             |                       |             |
| Surrogate            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rec. (%)               | Cor                                    | ntrol Limits | Qualifiers       |                       |             |
| n-Octacosane         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 95                     | 68-                                    | 140          | 60.0             |                       |             |

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Company            | Date Received: | 11/14/15   |
|--------------------------------------------|----------------|------------|
| M.L. 723B, P.O. Box 513249, Terminal Annex | Work Order:    | 15-11-1098 |
| Los Angeles, CA 90051-1249                 | Preparation:   | EPA 3050B  |
|                                            | Method:        | EPA 6010B  |
|                                            | I Inits        | ma/ka      |

Project: TS2015-C013 / Aliso Canyon

Page 1 of 3

| Client Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Sample<br>Number     | Date/Time<br>Collected | Matrix   | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------|------------|------------------|-----------------------|-------------|
| Well Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15-11-1098-2-A           | 11/13/15<br>18:40      | Sludge   | ICP 7300   | 11/14/15         | 11/14/15<br>14:03     | 151114L01   |
| Parameter Parame | 0                        | Result                 | R        | L          | DF               | Qua                   | lifiers     |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an one                   | ND                     | 0.       | 732        | 0.976            |                       |             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C 9 90                   | ND                     | .0       | 732        | 0.976            |                       |             |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ma carris                | 67.1                   | 0        | 488        | 0.976            |                       |             |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Marion 10                | ND                     | 0        | 244        | 0.976            |                       |             |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 90 50 B                  | ND                     | 0        | 488        | 0.976            |                       |             |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Conto Section Sea of the | ND                     | 0        | 244        | 0.976            |                       |             |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | die die                  | CIND                   | 0        | 244        | 0.976            |                       |             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0.569                  | o        | 488        | 0.976            |                       |             |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | NO On                  | 0        | 488        | 0.976            |                       |             |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | NDC /                  | 0 0      | 244        | 0.976            |                       |             |
| Vickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | NO TH                  | 0,0      | 244        | 0.976            |                       |             |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | ND                     | Oc 400.0 | 732        | 0,976            |                       |             |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0.671                  | 0,00     | 244        | 0.976            |                       |             |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 0.945                  | CONSIDER | 732        | 0.976            |                       |             |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | ND                     | 8        | 244 Q      | 0.976            |                       |             |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 13.9                   | 0        | 978 100    | 0,976            |                       |             |
| Well Fluid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 15-11-1098-2-А           | 11/13/15<br>18:40      | Sludge   | ICP 7300   | 11/14/15         | 11/14/15<br>14:19     | 151114L01   |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | Result                 | R        | L          | DF<br>9.76       | Qua                   | ulifiers    |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 103000                 | 4        | 3.8        | 9.76             |                       |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Company            | Date Received: | 11/14/15   |
|--------------------------------------------|----------------|------------|
| M.L. 723B, P.O. Box 513249, Terminal Annex | Work Order:    | 15-11-1098 |
| Los Angeles, CA 90051-1249                 | Preparation:   | EPA 3050B  |
|                                            | Method:        | EPA 6010B  |
|                                            | Units:         | mg/kg      |

Project: TS2015-C013 / Aliso Canyon

Page 2 of 3

| Client Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix     | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------|------------|------------|------------------|-----------------------|-------------|
| Junction SS25&9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-11-1098-3-A          | 11/13/15<br>18:50      | Sludge     | ICP 7300   | 11/14/15         | 11/14/15<br>14:10     | 151114L01   |
| Parameter Parame | 0                       | Result                 | R          | L          | DF               | Qua                   | alifiers    |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 82 Ope                  | ND                     | 0.         | 718        | 0.957            |                       |             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 9 9                   | 1.94                   | .0         | 718        | 0.957            |                       |             |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ma sa Ma                | 144                    | 0          | 478        | 0.957            |                       |             |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 100000                  | ND                     | 0          | 239        | 0.957            |                       |             |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Compliance Audir of the | 3.04                   | 0          | 478        | 0.957            |                       |             |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4, 3                    | 8.47                   | 0          | 239        | 0.957            |                       |             |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/2 1/0                | 239                    | 0          | 239        | 0.957            |                       |             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Condidental Subra       | 0 120                  | 0          | 478        | 0.957            |                       |             |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 0,772                  | . 0        | 478        | 0.957            |                       |             |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                         | 5.67                   |            | 239        | 0.957            |                       |             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 248                    | Oronico O  | 239        | 0.957            |                       |             |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | ND                     | Tes Code o | 718        | 0,957            |                       |             |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                         | 0.340                  | 0 90       | 239        | 0.957            |                       |             |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | ND                     | 900        | 239<br>718 | 0.957            |                       |             |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         | 37.6                   | 6          | 239 🔍      | 0.957            |                       |             |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                         | 45.9                   | 0          | 9870 470   | 0.957            |                       |             |
| Junction SS25&9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15-11-1098-3-A          | 11/13/15<br>18:50      | Sludge     | ICP 7300   | 11/14/15         | 11/14/15<br>14:22     | 151114L01   |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                         | Result                 | R          |            | DF<br>9,57       | Qualifiers            |             |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 43600                  | 4          | 7.8        | 9.57             |                       |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



 Southern California Gas Company
 Date Received:
 11/14/15

 M.L. 723B, P.O. Box 513249, Terminal Annex
 Work Order:
 15-11-1098

 Los Angeles, CA 90051-1249
 Preparation:
 EPA 3050B

 Method:
 EPA 6010B

 Units:
 mg/kg

Project: TS2015-C013 / Aliso Canyon Page 3 of 3

| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix       | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|----------------------|------------------------|--------------|------------|------------------|-----------------------|-------------|
| Method Blank         | 097-01-002-22051     | N/A                    | Solid        | ICP 7300   | 11/14/15         | 11/14/15<br>13:58     | 151114L01   |
| Parameter            | 0                    | Result                 | E            | ₹ <u>L</u> | DF               | Qua                   | lifiers     |
| Antimony             | an one               | ND                     | C            | 0.750      | 1.00             |                       |             |
| Arsenic              | C 4 90               | ND                     | . (          | 0.750      | 1.00             |                       |             |
| Barium               | ma en Ma             | ND                     | C            | 0.500      | 1.00             |                       |             |
| Beryllium            | Salor Collection     | ND                     | C            | .250       | 1.00             |                       |             |
| Cadmium              | Go So 40             | ND                     | 0            | 0.500      | 1.00             |                       |             |
| Chromium             | Contained Subrail    | ND                     |              | 0.250      | 1.00             |                       |             |
| Cobalt               | 10 May 1/2           | CMD                    | 0            | ).250      | 1.00             |                       |             |
| Copper               | 6                    | ND                     | (            | 0.500      | 1.00             |                       |             |
| ead                  |                      | ND O                   |              | 0.500      | 1.00             |                       |             |
| Molybdenum           |                      | NDC /                  | 0 0          | 0.250      | 1.00             |                       |             |
| Nickel               |                      | ND W                   | e oto vision | 0.250      | 1.00             |                       |             |
| Selenium             |                      | ND C                   | Oc 4000      | 0.750      | 1.00             |                       |             |
| Silver               |                      | ND                     | 0,9          | 250        | 1.00             |                       |             |
| Thallium             |                      | ND                     | 900          | 750        | 1.00             |                       |             |
| /anadium             |                      | ND                     | 6            | 250 0      | 1.00             |                       |             |
| Zina                 |                      | ND                     | 1            | 250 G      | 1.00             |                       |             |
| Calcium              |                      | ND                     | 5            | 5.00       | 1.00             |                       |             |
|                      |                      |                        |              |            | 1.00<br>1.00     |                       |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units:

15-11-1098 EPA 3010A Total

**EPA 6010B** mg/L

11/14/15

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

| Client Sample Number | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix                                 | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|-------------------------|------------------------|----------------------------------------|------------|------------------|-----------------------|-------------|
| Equipment Blank      | 15-11-1098-1-A          | 11/13/15<br>18:25      | Aqueous                                | ICP 7300   | 11/14/15         | 11/14/15<br>15:30     | 151114LA1   |
| <u>Parameter</u>     | 0                       | Result                 | RL                                     |            | DF               | Qua                   | lifiers     |
| Antimony             | Completion Seson        | ND                     | 0.0                                    | 150        | 1.00             |                       |             |
| Arsenic              | C 9 90                  | ND                     | 0.0                                    | 100        | 1.00             |                       |             |
| Barium               | ma Bouth                | ND                     | 0.0                                    | 100        | 1.00             |                       |             |
| Beryllium            | 10 10 10                | ND                     | 0.0                                    | 100        | 1.00             |                       |             |
| Cadmium              | Compliance Audie of     | ND                     | 0.0                                    | 100        | 1.00             |                       |             |
| Chromium             | A 3 3                   | ND                     | 0.0                                    | 0100       | 1.00             |                       |             |
| Cobalt               | 10/10                   | CIND                   | 0.0                                    | 100        | 1.00             |                       |             |
| Copper               | Compliance Audir of the | OND                    | 0.0                                    | 100        | 1.00             |                       |             |
| Lead                 |                         | ND -                   | 0.0                                    | 100        | 1.00             |                       |             |
| Molybdenum           |                         |                        | 0.0                                    | 0100       | 1.00             |                       |             |
| Nickel               |                         | Ve.                    | ^                                      | 100        | 1.00             |                       |             |
| Selenium             |                         | ND                     | 20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 0150       | 1.00             |                       |             |
| Silver               |                         | ND                     | C 90                                   | 00500      | 1.00             |                       |             |
| Thallium             |                         | ND                     | 0000                                   | r50        | 1.00             |                       |             |
| Vanadium             |                         | ND                     | 40.4                                   | 01.00 + 7  | 1.00             |                       |             |
| Calcium              |                         | 0.559                  | 0.1                                    | 00 CO      | 1.00             |                       |             |
| Zinc                 |                         | ND                     | 0.0                                    | 100 3/     | 1.00             |                       |             |
|                      |                         |                        |                                        |            | 1.00<br>1.00     |                       |             |
|                      |                         |                        |                                        |            | 000              |                       |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method:

Units:

11/14/15

15-11-1098 EPA 3010A Total

**EPA 6010B** 

mg/L

Page 2 of 2

| Client Sample Number | Lab Sample<br>Number | Date/Time<br>Collected | Matrix                  | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|----------------------|------------------------|-------------------------|------------|------------------|-----------------------|-------------|
| Method Blank         | 097-01-003-15490     | N/A                    | Aqueous                 | ICP 7300   | 11/14/15         | 11/14/15<br>15:26     | 151114LA1   |
| Parameter            | 0                    | Result                 | RL                      |            | DF               | Qua                   | alifiers    |
| Antimony             | an one               | ND                     | 0.0                     | 150        | 1.00             |                       |             |
| Arsenic              | 0,000                | ND                     | 0.0                     | 100        | 1.00             |                       |             |
| Barium               | man on the           | ND                     | 0.0                     | 100        | 1.00             |                       |             |
| Beryllium            | 10 10 10             | ND                     | 0.0                     | 100        | 1.00             |                       |             |
| Cadmium              | Cond Section Ses don | ND                     | 0.0                     | 100        | 1.00             |                       |             |
| Chromium             | A 3 3                | ND ND                  | 0.0                     | 1100       | 1.00             |                       |             |
| Cobalt               | 10 M                 | CAND.                  | 0.0                     | 100        | 1.00             |                       |             |
| Copper               | 1                    | MR                     | 0.0                     | 100        | 1.00             |                       |             |
| Lead                 |                      | ND C                   | 0.0                     | 100        | 1.00             |                       |             |
| Molybdenum           |                      | NDO 9                  | 0.0                     | 100        | 1.00             |                       |             |
| Nickel               |                      | 116.                   | A                       | 100        | 1.00             |                       |             |
| Selenium             |                      | ND                     | 0.0<br>CO 080<br>CO 080 | 150        | 1.00             |                       |             |
| Silver               |                      | ND                     | C 900                   | 0500       | 1.00             |                       |             |
| Thallium             |                      | ND                     | 0000                    | r50        | 1.00             |                       |             |
| Vanadium             |                      | ND                     | 80                      | 100        | 1.00             |                       |             |
| Calcium              |                      | ND                     | 7                       | 2 8        | 1.00             |                       |             |
| Zinc                 |                      | ND                     | 0.0                     | 100 9/     | 1.00             |                       |             |
|                      |                      |                        |                         |            | TOO SO           |                       |             |
|                      |                      |                        |                         |            | 50               |                       |             |

RL: Reporting Limit.



| Southern California Gas C | company              |                        | Date Recei  | ved:       |                               |                       | 11/14/15    |  |
|---------------------------|----------------------|------------------------|-------------|------------|-------------------------------|-----------------------|-------------|--|
| M.L. 723B, P.O. Box 5132  | 249, Terminal Annex  |                        | Work Order  |            | 15-11-1098<br>EPA 7470A Total |                       |             |  |
| Los Angeles, CA 90051-1   | 249                  |                        | Preparation |            |                               |                       |             |  |
|                           |                      |                        | Method:     |            |                               | EPA 7470A             |             |  |
|                           |                      |                        | Units:      |            |                               |                       | mg/L        |  |
| Project: TS2015-C013 / A  | liso Canyon          |                        |             |            |                               | Pa                    | ige 1 of 1  |  |
| Client Sample Number      | Lab Sample<br>Number | Date/Time<br>Collected | Matrix      | Instrument | Date<br>Prepared              | Date/Time<br>Analyzed | QC Batch ID |  |
| Equipment Blank           | 15-11-1098-1-A       | 11/13/15<br>18:25      | Aqueous     | Mercury 04 | 11/14/15                      | 11/14/15<br>13:57     | 151113LA3   |  |
| Parameter                 | 0                    | Result                 | RL          |            | <u>DF</u>                     | Qua                   | alifiers    |  |
| Mercury                   | an one               | ND                     | 0.0         | 000500     | 1.00                          |                       |             |  |

RL. Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Co  | mpany                |                        | Date Rece  | eived:          |                  |                       | 11/14/15    |  |
|-----------------------------|----------------------|------------------------|------------|-----------------|------------------|-----------------------|-------------|--|
| M.L. 723B, P.O. Box 51324   | 9, Terminal Annex    |                        | Work Orde  | er:             |                  |                       | 15-11-1098  |  |
| Los Angeles, CA 90051-124   | 49                   |                        | Preparatio | EPA 7471A Total |                  |                       |             |  |
|                             |                      | Method:                |            |                 |                  | EPA 7471A             |             |  |
|                             |                      | Units:                 |            |                 | mg/kg            |                       |             |  |
| Project: TS2015-C013 / Alis | so Canyon            | - 10                   |            |                 |                  | Pa                    | ige 1 of 1  |  |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix     | Instrument      | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |  |
| Well Fluid                  | 15-11-1098-2-A       | 11/13/15<br>18:40      | Sludge     | Mercury 05      | 11/14/15         | 11/14/15<br>15:12     | 151113L02   |  |
| Parameter                   | C.                   | Result                 | R          | <u>L</u>        | DF               | Qua                   | alifiers    |  |
| Mercury                     | O no nile            | ND                     | 0          | .0833           | 1.00             |                       |             |  |
| Junction SS2589             | 16-11-1698-3-A       | 11/13/15<br>18:50      | Sludge     | Mercury 05      | 11/14/15         | 11/14/15<br>15:14     | 151113L02   |  |
| Parameter                   | 970 75 44            | Result                 | R          | <u>L</u>        | DF               | Qua                   | alifiers    |  |
| Mercury                     | A403 77              | ND                     | 0          | .0794           | 1.00             |                       |             |  |
| Method Blank                | 099-16-272-1760      | NIA                    | Solid      | Mercury 05      | 11/13/15         | 11/13/15<br>19:55     | 151113L02   |  |
| Parameter                   |                      | Result                 | B          | L.              | DF               | Qua                   | alifiers    |  |
| Mercury                     |                      | ND CHILL               | e Oronson  | 0833            | 1,00             |                       |             |  |
|                             |                      |                        |            | Mercury 05      | Proj. Proj.      |                       |             |  |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Co  | mpany                |                        | Date Rece | eived:     |                  | 11/14/15              |             |  |
|-----------------------------|----------------------|------------------------|-----------|------------|------------------|-----------------------|-------------|--|
| M.L. 723B, P.O. Box 51324   | 9, Terminal Annex    |                        | Work Orde | 15-11-109  |                  |                       |             |  |
| Los Angeles, CA 90051-12    |                      | Preparatio             | n:        |            |                  | EPA 5030C             |             |  |
|                             |                      | Method:                |           |            | EPA 826          |                       |             |  |
|                             |                      | Units:                 |           |            | ug/kg            |                       |             |  |
| Project: TS2015-C013 / Alis | so Canyon            |                        |           |            |                  | Pa                    | ge 1 of 7   |  |
| Client Sample Number        | Lab Sample<br>Number | Date/Time<br>Collected | Matrix    | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |  |
| Well Fluid                  | 15-11-1098-2-B       | 11/13/15<br>18:40      | Sludge    | GC/MS W    | 11/14/15         | 11/14/15<br>15:06     | 151114L007  |  |

| Well Filling                    | 10-11-1000-2-2                  | 18:40            | oldage collina | 11114219 | 15:06 | 1011142001 |
|---------------------------------|---------------------------------|------------------|----------------|----------|-------|------------|
| Comment(s): - The reporting lim | it is elevated resulting from r | natrix interfere | nce.           |          |       |            |
| Parameter                       | de out                          | Result           | RL             | DF       | Qu    | alifiers   |
| Acetone                         | C 9 9                           | ND               | 12000          | 50.0     |       |            |
| Benzene                         | m. 80, 1/2.                     | ND               | 490            | 50.0     |       |            |
| Bromobenzene                    | 10 00 TO                        | ND               | 490            | 50.0     |       |            |
| Bromochloromethane              | Co 50.00                        | ND               | 490            | 50.0     |       |            |
| Bromodichloromethane            | 90000                           | ND               | 490            | 50.0     |       |            |
| Bromoform                       | 10 10                           | CND              | 490            | 50.0     |       |            |
| Bromomethane                    |                                 | CND              | 2400           | 50.0     |       |            |
| 2-Butanone                      |                                 | NO.              | 4900           | 50.0     |       |            |
| n-Butylbenzene                  |                                 | NDC .            | 6 490          | 50.0     |       |            |
| sec-Butylbenzene                |                                 | ND W             | 490            | 50.0     |       |            |
| tert-Butylbenzene               |                                 | ND               | 0 40 490       | 50.0     |       |            |
| Carbon Disulfide                |                                 | ND               | C 94900        | 50.0     |       |            |
| Carbon Tetrachloride            |                                 | ND               | % 4900m        | 50.0     |       |            |
| Chlorobenzene                   |                                 | ND               | 490 G<br>490   | 50.0     |       |            |
| Chloroethane                    |                                 | ND               | 4907           | 50,0     |       |            |
| Chloroform                      |                                 | ND               | 490            | 9/_ 50.0 |       |            |
| Chloromethane                   |                                 | ND               | 2400           | 50.0     |       |            |
| 2-Chlorotoluene                 |                                 | ND               | 490            | ×50.0    |       |            |
| 4-Chlorotoluene                 |                                 | ND               | 490            | 5000     |       |            |
| Dibromochloromethane            |                                 | ND               | 490            | 50.0C    |       |            |
| 1,2-Dibromo-3-Chloropropane     |                                 | ND               | 970            | 50.0     |       |            |
| 1,2-Dibromoethane               |                                 | ND               | 490            | 50.0     |       |            |
| Dibromomethane                  |                                 | ND               | 490            | 50.0     |       |            |
| 1,2-Dichlorobenzene             |                                 | ND               | 490            | 50.0     |       |            |
| 1,3-Dichlorobenzene             |                                 | ND               | 490            | 50.0     |       |            |
| 1,4-Dichlorobenzene             |                                 | ND               | 490            | 50.0     |       |            |
| Dichlorodifluoromethane         |                                 | ND               | 490            | 60.0     |       |            |
| 1,1-Dichloroethane              |                                 | ND               | 490            | 50.0     |       |            |
| 1,2-Dichloroethane              |                                 | ND               | 490            | 50.0     |       |            |
| 1,1-Dichloroethene              |                                 | ND               | 490            | 50.0     |       |            |
| c-1,2-Dichloroethene            |                                 | ND               | 490            | 50.0     |       |            |
| t-1,2-Dichloroethene            |                                 | ND               | 490            | 50.0     |       |            |
| 1,2-Dichloropropane             |                                 | ND               | 490            | 50.0     |       |            |
| 1,3-Dichloropropane             |                                 | ND               | 490            | 50.0     |       |            |

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Company                                                                                                                                                                                                                                                                                                                                                                  | Da       | te Received:   |            | 11/14/15    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|------------|-------------|
| M.L. 723B, P.O. Box 513249, Terminal Annex                                                                                                                                                                                                                                                                                                                                                       | Wo       | ork Order:     |            | 15-11-1098  |
| Los Angeles, CA 90051-1249                                                                                                                                                                                                                                                                                                                                                                       | Pre      | eparation:     |            | EPA 5030C   |
| East to a seed of a seed of a seed                                                                                                                                                                                                                                                                                                                                                               |          | thod:          |            | EPA 8260B   |
|                                                                                                                                                                                                                                                                                                                                                                                                  | Un       |                |            | ug/kg       |
| Project: TS2015-C013 / Aliso Canyon                                                                                                                                                                                                                                                                                                                                                              |          |                |            | Page 2 of 7 |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                        | Result   | RL             | DF         | Qualifiers  |
| 2,2-Dichloropropane                                                                                                                                                                                                                                                                                                                                                                              | ND       | 490            | 50.0       |             |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                              |          | 490            | 50.0       |             |
| c-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                            | ND       | 490            | 50.0       |             |
| t-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                            | ND       | 490            | 50.0       |             |
| Ethylbenzene O'G'                                                                                                                                                                                                                                                                                                                                                                                | ND       | 490            | 50.0       |             |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                       | ND       | 4900           | 50.0       |             |
| 1,1-Dichloropropene c-1,3-Dichloropropene t-1,3-Dichloropropene Ethylbenzene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene Styrene 1,1,2-Tetrachloroethane 1,1,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane | ND       | 490            | 50.0       |             |
| p-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                               | ND       | 490            | 50.0       |             |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                               | Dix ND   | 4900           | 50.0       |             |
| 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                             | CND      | 4900           | 50.0       |             |
| Naphthalene                                                                                                                                                                                                                                                                                                                                                                                      | O NOS    | 4900           | 50.0       |             |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                  | NO CO.   | 490            | 50.0       |             |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                          | ND/C B   | 490            | 50.0       |             |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                        | ND CHILL | 490            | 50.0       |             |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                        | ND 16    | Ok. 490        | 50.0       |             |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                | ND G     | 0490           | 50.0       |             |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 0 490          | 50.0       |             |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                           | ND       | 970            | 50.0       |             |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                           | ND       | 490            | 50.0       |             |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                            | ND       | 490 0 0        | 50.0       |             |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                            | ND       | 490 C          | 50.0       |             |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                                                                                                                                                                                                                                                                                                                                            | ND       | 4900           | 0,50.0     |             |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                  | ND       | 490            | 50.6       |             |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                           | ND       | 490            | 50.0       |             |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                           | ND       | 490            | 50.0       |             |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                           | ND       | 4900           | 50.0       |             |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                           | ND       | 490            | 50.0       |             |
| Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                    | ND       | 4900           | 50.0       |             |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                   | ND       | 490            | 50.0       |             |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                       | ND       | 490            | 50,0       |             |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                         | ND       | 490            | 50.0       |             |
| Methyl-t-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                      | ND       | 490            | 50.0       |             |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                        | Rec. (%) | Control Limits | Qualifiers |             |
| 1.4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                           | 100      | 60-132         |            |             |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                             | 97       | 63-141         |            |             |
| 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                            | 104      | 62-146         |            |             |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                       | 99       | 80-120         |            |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Date Received: 11/14/15 Southern California Gas Company Work Order: 15-11-1098 M.L. 723B, P.O. Box 513249, Terminal Annex Preparation: **EPA 5030C** Los Angeles, CA 90051-1249 **EPA 8260B** Method: Units: ug/kg

Project: TS2015-C013 / Aliso Canyon

Page 3 of 7

| Client Sample Number       | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix                                   | Instrument       | Date<br>Prepared  | Date/Time<br>Analyzed | QC Batch ID |
|----------------------------|-------------------------|------------------------|------------------------------------------|------------------|-------------------|-----------------------|-------------|
| Junction SS25&9            | 15-11-1098-3-B          | 11/13/15<br>18:50      | Sludge                                   | GC/MS W          | 11/14/15          | 11/14/15<br>14:38     | 151114L007  |
| Parameter                  | Cornoliance Audit of It | Result                 | R                                        | L                | DF                | Qua                   | lifiers     |
| Acetone                    | 2000c                   | ND                     | 13                                       | 2000             | 50.0              |                       |             |
| Benzene                    | 0 9 90                  | ND                     | 49                                       | 90               | 50.0              |                       |             |
| Bromobenzene               | man Bartha              | ND                     | 45                                       | 90               | 50.0              |                       |             |
| Bromochloromethane         | 100000                  | ND                     | 49                                       | 90               | 50.0              |                       |             |
| Bromodichloromethane       | 90 50 90 m              | ND                     | 45                                       | 90               | 50.0              |                       |             |
| Bromoform                  | 7,000                   | ND                     | 45                                       | 90               | 50.0              |                       |             |
| Bromomethane               | The state of            | CND                    | 2                                        | 400              | 50.0              |                       |             |
| 2-Butanone                 |                         | O NDO                  | 49                                       | 900              | 50.0              |                       |             |
| n-Butylbenzene             |                         | 5600                   | 49                                       | 90               | 50.0              |                       |             |
| sec-Butylbenzene           |                         | 1400                   | 40 40 40 40 40 40 40 40 40 40 40 40 40 4 | 90               | 50.0              |                       |             |
| tert-Butylbenzene          |                         | ND TH                  | 0, 4                                     | 90               | 50.0              |                       |             |
| Carbon Disulfide           |                         | ND                     | O. 40 4                                  | 900              | 50.0              |                       |             |
| Carbon Tetrachloride       |                         | ND                     | C 94                                     | 90               | 50.0              |                       |             |
| Chlorobenzene              |                         | ND                     | 90 4                                     | 500 <sub>m</sub> | 50.0              |                       |             |
| Chloroethane               |                         | ND                     | 9                                        | 0 G              | 50.0              |                       |             |
| Chloroform                 |                         | ND                     | 4                                        |                  | 50,0              |                       |             |
| Chloromethane              |                         | ND                     |                                          | 400 9/           | 50.0              |                       |             |
| 2-Chlorotolyene            |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| 4-Chlorotoluene            |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| Dibromochloromethane       |                         | ND                     | 45                                       | 90               | 50.0              |                       |             |
| ,2-Dibromo-3-Chloropropane |                         | ND                     | 9                                        | 70               | 50.0 <sup>C</sup> |                       |             |
| 1,2-Dibromoethane          |                         | ND                     | 45                                       | 90               | 50.0              |                       |             |
| Dibromomethane             |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| .2-Dichlorobenzene         |                         | ND                     |                                          | 90               | 50.0              |                       |             |
| ,3-Dichlorobenzene         |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| ,4-Dichlorobenzene         |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| Dichlorodifluoromethane    |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| ,1-Dichloroethane          |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| ,2-Dichloroethane          |                         | ND                     |                                          | 90               | 50.0              |                       |             |
| 1,1-Dichlaroethene         |                         | ND                     | 45                                       | 90               | 50.0              |                       |             |
| c-1,2-Dichloroethene       |                         | ND                     | 45                                       | 90               | 50.0              |                       |             |
| -1,2-Dichloroethene        |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |
| 1,2-Dichloropropane        |                         | ND                     | 45                                       | 90               | 50.0              |                       |             |
| 1,3-Dichloropropane        |                         | ND                     |                                          | 90               | 50.0              |                       |             |
| 2,2-Dichloropropane        |                         | ND                     | 49                                       | 90               | 50.0              |                       |             |

RL: Reporting Limit.

DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | te Received:   |            | 11/14/15          |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|------------|-------------------|---|
| M.L. 723B, P.O. Box 513249, Terminal Annex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ork Order:     |            | 15-11-1098        |   |
| Los Angeles, CA 90051-1249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Pro                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eparation:     |            | EPA 5030C         |   |
| Sandy Control of the  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ethod:         |            | EPA 8260B         |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | its:           |            | ug/kg             |   |
| Project: TS2015-C013 / Aliso Canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | The Part of the Pa |                |            | Page 4 of 7       |   |
| Parameter Parame | Result                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RL             | DF         | Qualifiers        |   |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       | The second second |   |
| c-1,3-Dichloropropene t-1,3-Dichloropropene Ethylbenzene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methyl-ene Chloride 4-Methyl-2-Pentanone n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       |                   |   |
| t-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       |                   |   |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490            | 50.0       |                   |   |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4900           | 50.0       |                   |   |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490            | 50.0       |                   |   |
| p-isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490            | 50.0       |                   |   |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4900           | 50.0       |                   |   |
| 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Dix ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4900           | 50.0       |                   |   |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490            | 50.0       |                   |   |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | O NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490            | 50.0       |                   |   |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NO Co.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 490            | 50.0       |                   | 7 |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND/C B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 490            | 50.0       |                   | 1 |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND YELL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 490            | 50.0       |                   |   |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ok 490         | 50.0       |                   |   |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0970           | 50.0       |                   |   |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 490          | 50.0       |                   |   |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Ø\$0 C         | 50.0       |                   |   |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       |                   |   |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490<br>490     | 50.0       |                   |   |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       |                   |   |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       |                   |   |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4900           | 50.0       |                   |   |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 12000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 490            | 50.0       |                   |   |
| Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4900           | 50.0       |                   |   |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       |                   |   |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 490            | 50.0       |                   |   |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 490            | 50.0       |                   |   |
| Methyl-t-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 490            | 50.0       |                   |   |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rec. (%)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Control Limits | Qualifiers |                   |   |
| 1,4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 108                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60-132         |            |                   |   |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 63-141         |            |                   |   |
| 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 62-146         |            |                   |   |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 80-120         |            |                   |   |

RL. Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Project: TS2015-C013 / Aliso Canyon

## **Analytical Report**

Date Received: 11/14/15 Southern California Gas Company Work Order: 15-11-1098 M.L. 723B, P.O. Box 513249, Terminal Annex Preparation: **EPA 5030C** Los Angeles, CA 90051-1249 Method: **EPA 8260B** ug/kg

Units:

Page 5 of 7

| Client Sample Number   | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix   | Instrument    | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|------------------------|-------------------------|------------------------|----------|---------------|------------------|-----------------------|-------------|
| Junction SS25&9        | 15-11-1098-3-B          | 11/13/15<br>18:50      | Sludge   | GC/MS W       | 11/14/15         | 11/14/15<br>16:28     | 151114L007  |
| <u>Parameter</u>       | 0                       | Result                 | R        | L             | DF               | Qua                   | alifiers    |
| Naphthalene            | an one                  | 28000                  | 2        | 4000          | 250              |                       |             |
| 1,2,4-Trimethylbenzene | Compliance Audit of the | 26000                  | 2        | 400           | 250              |                       |             |
| Surrogate              | Pla cholako             | Rec. (%)               | <u>C</u> | ontrol Limits | Qualifiers       |                       |             |
| 1,4-Bromofluorobenzene | So 50 80                | 98                     | 6        | 0-132         |                  |                       |             |
| Dibromofluoromethane   | N. 33 3                 | 97                     | 6        | 3-141         |                  |                       |             |
| 1,2-Dichloroethane-d4  | 10/2 1/0                | C001                   | 6        | 2-146         |                  |                       |             |
| Toluene-d8             |                         | @ 10th                 | 8        | 0-120         |                  |                       |             |
|                        |                         | 43/200                 |          |               |                  |                       |             |
|                        |                         | Cal                    | 0        |               |                  |                       |             |
|                        |                         | 4/1                    | 0        |               |                  |                       |             |
|                        |                         |                        | 5000     |               |                  |                       |             |
|                        |                         |                        | 000      | So.           |                  |                       |             |
|                        |                         |                        | 0        | G.            |                  |                       |             |
|                        |                         |                        |          | no Per        |                  |                       |             |
|                        |                         |                        |          | 9/            | )                |                       |             |
|                        |                         |                        |          |               | 000              |                       |             |
|                        |                         |                        |          |               | 50               |                       |             |
|                        |                         |                        |          |               | C                |                       |             |
|                        |                         |                        |          |               |                  |                       |             |
|                        |                         |                        |          |               |                  |                       |             |
|                        |                         |                        |          |               |                  |                       |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Date Received: 11/14/15 Southern California Gas Company Work Order: 15-11-1098 M.L. 723B, P.O. Box 513249, Terminal Annex Preparation: **EPA 5030C** Los Angeles, CA 90051-1249 **EPA 8260B** Method: Units: ug/kg

Project: TS2015-C013 / Aliso Canyon

Page 6 of 7

| Client Sample Number       | Lab Sample<br>Number     | Date/Time<br>Collected | Matrix | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------------|--------------------------|------------------------|--------|------------|------------------|-----------------------|-------------|
| Method Blank               | 099-12-796-10429         | N/A                    | Solid  | GC/MS W    | 11/14/15         | 11/14/15<br>13:42     | 151114L007  |
| <u>Parameter</u>           | Contoliance Audit of the | Result                 | 1      | <u> </u>   | DF               | Qua                   | lifiers     |
| Acetone                    | an one                   | ND                     |        | 2000       | 50.0             |                       |             |
| Benzene                    | 0 9 9                    | ND                     |        | 500        | 50.0             |                       |             |
| Bromobenzene               | ma so Ma                 | ND                     |        | 500        | 50.0             |                       |             |
| Bromochloromethane         | 10 10 10                 | ND                     |        | 500        | 50.0             |                       |             |
| Bromodichloromethane       | So 50 %                  | ND                     |        | 500        | 50.0             |                       |             |
| Bromoform                  | 4 3 3                    | ND ND                  |        | 500        | 50.0             |                       |             |
| Bromomethane               | 10/2 M                   | CMD                    |        | 2500       | 50.0             |                       |             |
| 2-Butanone                 | 16                       | NDO                    |        | 5000       | 50.0             |                       |             |
| n-Butylbenzene             |                          | ND C                   |        | 500        | 50.0             |                       |             |
| sec-Butylbenzene           |                          | NDC 9                  | 0      | 500        | 50.0             |                       |             |
| ert-Butylbenzene           |                          | ND W                   | 0,     | 500        | 50.0             |                       |             |
| Carbon Disulfide           |                          | ND 3                   | 6 40 S | 5000       | 50.0             |                       |             |
| Carbon Tetrachloride       |                          | ND                     | 00     | 500        | 50.0             |                       |             |
| Chlorobenzene              |                          | ND                     | 00     | 500        | 50.0             |                       |             |
| Chlorcethane               |                          | ND                     | 9      | 60 G       | 50.0             |                       |             |
| Chloroform                 |                          | ND                     |        | 5007       | 50,0             |                       |             |
| Chloromethane              |                          | ND                     |        | 2500       | 50.0             |                       |             |
| 2-Chlorotoluene            |                          | ND                     |        | 500        | 50.0             |                       |             |
| 4-Chlorotoluene            |                          | ND                     |        | 500        | 50.0             |                       |             |
| Dibromochloromethane       |                          | ND                     |        | 500        | 5000             |                       |             |
| ,2-Dibromo-3-Chloropropane |                          | ND                     |        | 1000       | 50.0             |                       |             |
| 1,2-Dibromoethane          |                          | ND                     | 1      | 500        | 50.0             |                       |             |
| Dibromomethane             |                          | ND                     | 4      | 500        | 50.0             |                       |             |
| .2-Dichlorobenzene         |                          | ND                     |        | 500        | 50.0             |                       |             |
| 1,3-Dichlorobenzene        |                          | ND                     | 1      | 500        | 50.0             |                       |             |
| 1,4-Dichlorobenzene        |                          | ND                     | 3      | 500        | 50.0             |                       |             |
| Dichlorodifluoromethane    |                          | ND                     |        | 500        | 50.0             |                       |             |
| 1,1-Dichloroethane         |                          | ND                     |        | 500        | 50.0             |                       |             |
| 1,2-Dichloroethane         |                          | ND                     |        | 500        | 50.0             |                       |             |
| I,1-Dichlaroethene         |                          | ND                     |        | 500        | 50.0             |                       |             |
| c-1,2-Dichloroethene       |                          | ND                     |        | 500        | 50.0             |                       |             |
| -1,2-Dichloroethene        |                          | ND                     |        | 500        | 50.0             |                       |             |
| 1,2-Dichloropropane        |                          | ND                     |        | 500        | 50.0             |                       |             |
| 1,3-Dichloropropane        |                          | ND                     |        | 500        | 50.0             |                       |             |
| 2,2-Dichloropropane        |                          | ND                     |        | 500        | 50.0             |                       |             |

RL: Reporting Limit.

DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Company                                  | Dat      | te Received:                            |             | 11/14/15   |  |
|------------------------------------------------------------------|----------|-----------------------------------------|-------------|------------|--|
| M.L. 723B, P.O. Box 513249, Terminal Annex                       | Wo       | rk Order:                               |             | 15-11-1098 |  |
| Los Angeles, CA 90051-1249                                       | Pre      | eparation:                              |             | EPA 5030C  |  |
| Los Aligolos, OA 0000 I 1240                                     |          | thod:                                   |             | EPA 8260B  |  |
|                                                                  | Uni      |                                         |             | ug/kg      |  |
| Project: TS2015-C013 / Aliso Canyon                              | Oil      |                                         | Page 7 of 7 |            |  |
| Parameter                                                        | Result   | RL                                      | DF          | Qualifiers |  |
| 1,1-Dichloropropene                                              | ND       | 500                                     | 50.0        | deadmicro  |  |
|                                                                  |          | 434                                     | 50.0        |            |  |
| -1.3-Dichloropropene                                             | ND       | 500                                     | 50.0        |            |  |
| Ethylbenzene                                                     | ND       | 500                                     | 50.0        |            |  |
| 2-Hexanone                                                       | ND       | 5000                                    | 50.0        |            |  |
| sopropylbenzene                                                  | ND       | 500                                     | 50.0        |            |  |
| o-Isopropyltoluene                                               | ND       | 500                                     | 50.0        |            |  |
| Methylerie Chloride                                              | ND       | 5000                                    | 50.0        |            |  |
| -Methyl-2-Pentanone                                              | Sa ND    | 5000                                    | 50.0        |            |  |
| -1,3-Dichloropropene  -1,3-Dichloropropene  -1,3-Dichloropropene | CND      | 5000                                    | 50.0        |            |  |
| -Propylbenzene                                                   | NO NO    | 500                                     | 50.0        |            |  |
| tyrene                                                           | ND %     | 500                                     | 50.0        |            |  |
| 1,1,2-Tetrachloroethane                                          | NOV.     | 500                                     | 50.0        |            |  |
| 1.2.2-Tetrachioroethane                                          | ND C     | 500                                     | 50.0        |            |  |
| etrachloroethene                                                 | ND The   | 0/ 500                                  | 50.0        |            |  |
| oluene                                                           | ND %     | 3/0500                                  | 50.0        |            |  |
| ,2,3-Trichlorobenzene                                            | ND       | 500<br>500<br>500<br>1000<br>500<br>500 | 50.0        |            |  |
| ,2,4-Trichlorobenzene                                            | ND       | 500                                     | 50.0        |            |  |
| 1,1-Trichloroethane                                              | ND       | 500                                     | 50.0        |            |  |
| .1,2-Trichloroethane                                             | ND       | 500 0 0                                 | 50.0        |            |  |
| 1,2-Trichloro-1,2,2-Trifluoroethane                              | ND       | 5000                                    | 50.0        |            |  |
| richloroethene                                                   | ND       | 500                                     | 50.0        |            |  |
| 2,3-Trichloropropane                                             | ND       | 500                                     | 50.0        |            |  |
|                                                                  | ND       | 500                                     | 50.0        |            |  |
| ,2,4-Trimethylbenzene<br>richlerofluoromethane                   |          |                                         | 50.0        |            |  |
|                                                                  | ND<br>ND | 5000<br>500                             | 50.0        |            |  |
| ,3,5-Trimethylberizene                                           |          |                                         | 50.0        |            |  |
| finyl Acetate                                                    | ND       | 5000                                    |             |            |  |
| inyl Chloride                                                    | ND       | 500                                     | 50.0        |            |  |
| /m-Xylene                                                        | ND       | 500                                     | 50.0        |            |  |
| -Xylene                                                          | ND       | 500                                     | 50.0        |            |  |
| fethyl-t-Butyl Ether (MTBE)                                      | ND       | 500                                     | 50.0        |            |  |
| urrogate                                                         | Rec. (%) | Control Limits                          | Qualifiers  |            |  |
| ,4-Bromofluorobenzene                                            | 98       | 60-132                                  |             |            |  |
| Dibromofluoromethane                                             | 97       | 63-141                                  |             |            |  |
| ,2-Dichloroethane-d4                                             | 103      | 62-146                                  |             |            |  |
| Toluene-d8                                                       | 99       | 80-120                                  |             |            |  |

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

RL. Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Ex. I-7, page 29 of 85



Southern California Gas Company

Date Received:

11/14/15

M.L. 723B, P.O. Box 513249, Terminal Annex

Work Order:

15-11-1098

Los Angeles, CA 90051-1249

| Client Sample Number |                  |        | Lab S        | Sample Number |              | Date/Tir                       | ne Collected                   | Matrix         |
|----------------------|------------------|--------|--------------|---------------|--------------|--------------------------------|--------------------------------|----------------|
| Equipment Blank      |                  |        | 15-11        | -1098-1       |              | 11/13/1                        | 18:25                          | Aqueous        |
| Parameter            | Results          | RL     | DF           | Qualifiers    | Units        | <u>Date</u><br>Prepared        | <u>Date</u><br>Analyzed        | Method         |
| Chloride             | ND               | 2.0    | 1.00         |               | mg/L         | N/A                            | 11/14/15                       | SM 4500-CI C   |
| Well Fluid           |                  |        | 15-11-1098-2 |               |              | 11/13/1                        | 5 18:40                        | Sludge         |
| Parameter            | Results          | RL     | DF           | Qualifiers    | Units        | <u>Date</u><br><u>Prepared</u> | <u>Date</u><br><u>Analyzed</u> | Method         |
| Ignitability         | 242              | 670    | 1.00         |               | oF.          | N/A                            | 11/14/15                       | EPA 1010A(M)   |
| Sulfide, Total       | 9242<br>ND<br>ND | 0.50   | 1.00         |               | mg/kg        | 11/14/15                       | 11/14/15                       | EPA 376.2M     |
| Cyanide, Total       | ND O             | 0.50 3 | 1.00         |               | mg/kg        | 11/14/15                       | 11/14/15                       | EPA 9010C/9014 |
| pH                   | 6.49             | 60.00  | 04.00        |               | pH units     | 11/14/15                       | 11/14/15                       | EPA 9045D      |
| Chloride             | 15000            | 2000   | 200          |               | mg/kg        | 11/14/15                       | 11/14/15                       | SM 4500-CI C   |
| Junction SS25&9      |                  |        | 15-11        | 1098-3        |              | 11/13/1                        | 5 18:50                        | Sludge         |
| Parameter            | Results          | RL     | -            | a significant | Units        | <u>Date</u><br>Prepared        | Date<br>Analyzed               | Method         |
| Ignitability         | >212             | 70     | 1,00         | Chin On       | °F           | N/A                            | 11/14/15                       | EPA 1010A(M)   |
| Sulfide, Total       | ND               | 0.50   | 1.00         | Man V         | mg/kg        | 11/14/15                       | 11/14/15                       | EPA 376.2M     |
| Cyanide, Total       | ND               | 0.50   | 1.00         | C             | mg/kg        | 11/14/15                       | 11/14/15                       | EPA 9010C/9014 |
| pH                   | 7,30             | 0.01   | 1.00         | 0             | pH units     | 11/14/15                       | 11/14/15                       | EPA 9045D      |
| Chloride             | 28000            | 500    | 50.0         | Collines Co   | mg/kg        | 11/14/15                       | 11/14/15                       | SM 4500-CI C   |
| Method Blank         |                  |        |              |               | 30           | N/A                            |                                | Solid          |
| Parameter            | Results          | RL     | <u>DF</u>    | Qualifiers    | <u>Units</u> | Date<br>Prepared               | <u>Date</u><br><u>Analyzed</u> | Method         |
| Sulfide, Total       | ND               | 0.10   | 0.200        |               | mg/kg        | 11/14/15                       | 511/14/15                      | EPA 376.2M     |
| Cyanide, Total       | ND               | 0.050  | 0.100        |               | mg/kg        | 11/14/15                       | 91/4/15                        | EPA 9010C/9014 |
|                      |                  | 2.2    | 4 00         |               |              | 4116                           | 44.14.414.                     | 014 4505 010   |
| Chloride             | ND               | 2.0    | 1,00         |               | mg/L         | N/A                            | 11/14/15                       | SM 4500-CI C   |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1098

N/A EPA 9010C/9014

Project: TS2015-C013 / Aliso Canyon

Page 1 of 7

| Quality Control Sample ID | Туре                               | Matrix      | Instr       | ument        | Date Prepared | Date Ana | lyzed | MS/MSD Bat | ch Numbe   |
|---------------------------|------------------------------------|-------------|-------------|--------------|---------------|----------|-------|------------|------------|
| Junction SS25&9           | Sample                             | Sludge      | UV 8        | 1            | 11/14/15      | 11/14/15 | 12:09 | F1114CNS1  |            |
| Junction SS2589           | Matrix Spike                       | Sludge      | UV 8        |              | 11/14/15      | 11/14/15 | 12:09 | F1114CNS1  |            |
| Junction SS25&9           | Matrix Spike Duplicate             | Sludge      | UV 8        |              | 11/14/15      | 11/14/15 | 12:09 | F1114CNS1  |            |
| Parameter                 | Sample Spike<br>Conc. Added        | MS<br>Conc. | MS<br>%Rec. | MSD<br>Conc. | MSD<br>%Rec.  | %Rec. CL | RPD   | RPDCL      | Qualifiers |
| Cyanide, Total            | Sample Spike Conc. Added ND 0.2000 | 0.1770      | 88          | 0.1720       | 86            | 70-130   | 3     | 0-25       |            |
|                           | Addis Or W                         | The Duble   | · B         |              |               |          |       |            |            |
|                           |                                    | "C          | Ellies Ou   | i v          |               |          |       |            |            |
|                           |                                    |             | Coc         | ons or       | 2             |          |       |            |            |
|                           |                                    |             |             | "No          | Teral O.      |          |       |            |            |
|                           |                                    |             |             |              | 100           | 50       |       |            |            |
|                           |                                    |             |             |              |               | C        |       |            |            |
|                           |                                    |             |             |              |               |          |       |            |            |
|                           |                                    |             |             |              |               |          |       |            |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received: Work Order: 11/14/15 15-11-1098 EPA 3550B

Preparation: Method:

EPA 8015B (M)

Page 2 of 7

| Quality Control Sample ID Well Fluid | Type<br>Sample              | Matrix<br>Sludge     | Inst               | rument                | Date Prepare        |                    | CONTRACTOR OF THE PARTY OF THE | MS/MSD Bat<br>151114502 | ch Number  |
|--------------------------------------|-----------------------------|----------------------|--------------------|-----------------------|---------------------|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------|
| Well Fluid                           | Matrix Spike                | Sludge               | GC                 |                       | 11/14/15            |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151114502               |            |
|                                      |                             |                      |                    |                       |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 151114502               |            |
| <u>Parameter</u><br>TPH as Diesel    | Sample Spike<br>Codc Added  | MS<br>Conc.<br>400.2 | MS<br>%Rec.<br>100 | MSD<br>Conc.<br>425.0 | MSD<br>%Rec.<br>106 | %Rec. CL<br>64-130 | RPD<br>6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0-15                    | Qualifiers |
|                                      | Sample Spike Added ND 400.0 | Titled Under         |                    |                       |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |
|                                      |                             | Uslice               | The On             |                       |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |
|                                      |                             |                      | Mes Co             | Slons                 |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |
|                                      |                             |                      |                    | e during              | Sener               |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |
|                                      |                             |                      |                    |                       | al Orde             | 200                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |
|                                      |                             |                      |                    |                       |                     | O.C.               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |
|                                      |                             |                      |                    |                       |                     |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                         |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1098

EPA 3050B EPA 6010B

Project: TS2015-C013 / Aliso Canyon

Page 3 of 7

| Quality Control Sample ID | Туре            |                | Matrix      | Inst        | rument       | Date Prepared | Date Ana | lyzed | MS/MSD Ba | tch Number |
|---------------------------|-----------------|----------------|-------------|-------------|--------------|---------------|----------|-------|-----------|------------|
| Well Fluid                | Sample          |                | Sludge      | ICP         | 7300         | 11/14/15      | 11/14/15 | 14:03 | 151114501 |            |
| Well Fluid                | Matrix Spike    |                | Sludge      | ICP         | 7300         | 11/14/15      | 11/14/15 | 14:05 | 151114501 |            |
| Well Fluid                | Matrix Spike D  | Ouplicate      | Sludge      | ICP         | 7300         | 11/14/16      | 11/14/15 | 14:08 | 151114501 |            |
| Parameter                 | Sample<br>Conc. | Spike<br>Added | MS<br>Conc. | MS<br>%Rec. | MSD<br>Conc. | MSD<br>%Rec.  | %Rec. CL | RPD   | RPD CL    | Qualifiers |
| Antimony                  | DAND THE        | 25.00          | 19.06       | 76          | 18.96        | 76            | 50-115   | 1     | 0-20      |            |
| Arsenic                   | O NOU O         | 25.00          | 24.24       | 97          | 24.02        | 96            | 75-125   | 1     | 0-20      |            |
| Barium                    |                 | 25.00          | 100.4       | 133         | 87.90        | 83            | 75-125   | 13    | 0-20      | 3          |
| Beryllium                 | 4.5             | 25.00          | 22.22       | 89          | 21 61        | 86            | 75-125   | 3     | 0-20      |            |
| Cadmium                   | ND &            | 25,00          | 22.04       | 88          | 21.67        | 87            | 75-125   | 2     | 0-20      |            |
| Chromium                  | ND              | 25,000         | 22 20       | 89          | 21.81        | 87            | 75-125   | 2     | 0-20      |            |
| Cobalt                    | ND              | 25.00          | 22.60       | 90          | 22.19        | 89            | 75-125   | 2     | 0-20      |            |
| Copper                    | 0.5885          | 25.00          | 26 62       | 104         | 25.00        | 102           | 75-125   | 2     | 0-20      |            |
| Lead                      | ND              | 25.00          | 19.43       | 78<br>78    | 19.39        | 78            | 75-125   | 0     | 0-20      |            |
| Molybdenum                | ND              | 25.00          | 23.97       | 66          | 23.78        | 95            | 75-125   | 1     | 0-20      |            |
| Nickel                    | ND              | 25.00          | 21.87       | 1/87 POLOV  | 21.49        | 86            | 75-125   | 2     | 0-20      |            |
| Selenium                  | ND              | 25.00          | 23.77       | 953         | 23.62        | 94            | 75-125   | 1     | 0-20      |            |
| Silver                    | 0.6706          | 12.50          | 14.15       | 108 0       | 13:30        | 101           | 75-125   | 6     | 0-20      |            |
| Thallium                  | 0,9450          | 25.00          | 22.81       | 87          | Q17.12"      | 65            | 75-125   | 28    | 0-20      | 3,4        |
| Vanadium                  | ND              | 25.00          | 24.55       | 98          | 23,86        | 95            | 75-125   | 3     | 0-20      |            |
| Zínc                      | 13.90           | 25.00          | 35.25       | 85          | 35.190       | 85            | 75-125   | 0     | 0-20      |            |
| Calcium                   | 103200          | 25.00          | 99250       | 4X          | 92280        | 40            | 75-125   | 4X    | 0-20      | Q          |
|                           |                 |                |             |             |              | Q.            |          |       |           |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1098 EPA 3010A Total EPA 6010B

Project: TS2015-C013 / Aliso Canyon

Page 4 of 7

| Quality Control Sample ID | Type            |                | Matrix      | Inst        | trument      | Date Prepared | Date Ana | lyzed | MS/MSD Ba | tch Number |
|---------------------------|-----------------|----------------|-------------|-------------|--------------|---------------|----------|-------|-----------|------------|
| 15-11-1099-1              | Sample          |                | Aqueous     | s ICF       | 7300         | 11/14/15      | 11/14/15 | 15:34 | 151114SA1 | 100        |
| 15-11-1099-1              | Matrix Spike    |                | Aqueous     | s ICF       | 7300         | 11/14/15      | 11/14/15 | 15:37 | 151114SA1 |            |
| 15-11-1099-1              | Matrix Spike I  | Duplicate      | Aqueous     | s ICF       | 7300         | 11/14/15      | 11/14/15 | 15:43 | 151114SA1 |            |
| <u>Parameter</u>          | Sample<br>Conc. | Spike<br>Added | MS<br>Conc. | MS<br>%Rec. | MSD<br>Conc. | MSD<br>%Rec.  | %Rec. CL | RPD   | RPD CL    | Qualifiers |
| Antimony                  | SND The         | 0.5000         | 0.2473      | 49          | 0.2457       | 49            | 72-132   | 1     | 0-10      | 3          |
| Arsenic                   | 0.01929         | 0.5000         | 0.6014      | 118         | 0.6118       | 120           | 80-140   | 2     | 0-11      |            |
| Barium                    | 2,256           | 0,5000         | 2,893       | 4X          | 3.054        | 4X            | 87-123   | 4X    | 0-6       | Q          |
| Beryllium                 | ND              | 0.5000         | 0.5453      | 109         | 0.5677       | 114           | 89-119   | 4     | 0-8       |            |
| Cadmium                   | 0.05572         | 0.5000         | 0.5323      | 95          | 0.5480       | 98            | 82-124   | 3     | 0-7       |            |
| Chromium                  | ND              | 0.5000         | 0,5422      | 108         | 0,5708       | 114           | 86-122   | 5     | 0-8       |            |
| Cobalt                    | 0.01920         | 0.5000         | 0.5191      | 100         | 0.5351       | 103           | 83-125   | 3     | 0-7       |            |
| Соррег                    | 0.1176          | 0.5000         | 0.67420     | 111         | 0.7070       | 118           | 78-126   | 5     | 0-7       |            |
| Lead                      | ND              | 0.5000         | 0.4253      | 285         | 0,4394       | 88            | 84-120   | 3     | 0-7       |            |
| Molybdenum                | 0.05082         | 0.5000         | 0.5453      | 99          | 0.5629       | 102           | 78-126   | 3     | 0-7       |            |
| Nickel                    | 0.1773          | 0.5000         | 0.6734      | 1045        | 0.6974       | 104           | 84-120   | 3     | 0-7       |            |
| Selenium                  | ND              | 0.5000         | 0.5193      | 1045        | 0.5492       | 110           | 79-127   | 6     | 0-9       |            |
| Silver                    | 0.01846         | 0.2500         | 0.3288      | 124 0       | 0,3411       | 129           | 86-128   | 4     | 0-7       | 3          |
| Thallium                  | 0.03243         | 0.5000         | 0.2546      | 44          | 0.2788       | 49            | 79-121   | 9     | 8-0       | 3,4        |
| Vanadium                  | 0.2425          | 0.5000         | 0.8265      | 117         | 0.8762       | 127           | 88-118   | 6     | 0-7       | 3          |
| Calcium                   | 3262            | 0.5000         | 3112        | 4X          | 31620        | 128 OF CO.    | 77-113   | 4X    | 0-11      | Q          |
| Zinc                      | 0.9568          | 0.5000         | 1.561       | 121         | 1.595        | 128           | 89-131   | 2     | 0-8       |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received: Work Order:

11/14/15 15-11-1098

Preparation:

EPA 7470A Total **EPA 7470A** 

Method:

Page 5 of 7

| Quality Control Sample ID | Туре                          | Matrix      | Instrument          | Date Prepa     | red Date Ana | lyzed | MS/MSD Bat | tch Number |
|---------------------------|-------------------------------|-------------|---------------------|----------------|--------------|-------|------------|------------|
| 15-11-0525-14             | Sample                        | Aqueous     |                     |                |              |       | 151113SA3  |            |
| 15-11-0525-14             | Matrix Spike                  | Aqueous     |                     |                |              |       | 151113SA3  |            |
| 15-11-0525-14             | Matrix Spike Duplicate        | Aqueous     | Mercury 0           | 11/13/16       | 11/13/15     | 18:38 | 151113SA3  |            |
| Parameter                 | Sample Spike Conc. Added      | MS<br>Conc. | MS MSI<br>%Rec. Con | MSD<br>%Rec.   | %Rec. CL     | RPD   | RPDCL      | Qualifiers |
| Mercury                   | Sample Conc. Added ND 0.01000 | 0.01030     | 103 0.01            | 059 106        | 55-133       | 3     | 0-20       |            |
|                           | Addit OLD                     | The Dublic  | Ø,                  |                |              |       |            |            |
|                           |                               | E.C.        | The Ovision         |                |              |       |            |            |
|                           |                               |             | Codedi              | G <sub>0</sub> |              |       |            |            |
|                           |                               |             | 3                   | To Teral On    |              |       |            |            |
|                           |                               |             |                     | . 6            | 9,500.       |       |            |            |
|                           |                               |             |                     |                | C            |       |            |            |
|                           |                               |             |                     |                |              |       |            |            |
|                           |                               |             |                     |                |              |       |            |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received: Work Order:

15-11-1098 EPA 7471A Total

Preparation: Method:

EPA 7471A

11/14/15

Page 6 of 7

| Quality Control Sample ID | Туре                               | Matrix      | Inst        | rument       | Date Prepared | Date Ana | lyzed | MS/MSD Bat | tch Number |
|---------------------------|------------------------------------|-------------|-------------|--------------|---------------|----------|-------|------------|------------|
| 15-11-0586-3              | Sample                             | Solid       | Mei         | rcury 05     | 11/13/15      | 11/13/15 | 20:03 | 151113502  |            |
| 15-11-0586-3              | Matrix Spike                       | Solid       | Mei         | cury 05      | 11/13/15      | 11/13/15 | 20:06 | 151113502  |            |
| 15-11-0586-3              | Matrix Spike Duplicate             | Solid       | Mei         | rcury 05     | 11/13/15      | 11/13/15 | 20:08 | 151113802  |            |
| <u>Parameter</u>          | Sample Spike<br>Conc. Added        | MS<br>Conc. | MS<br>%Rec. | MSD<br>Conc. | MSD<br>%Rec   | %Rec. CL | RPD   | RPD CL     | Qualifiers |
| Mercury                   | Sample Spike Conc. Added ND 0.8350 | 0.6764      | 81          | 0.7051       | 84            | 71-137   | 4     | 0-14       |            |
|                           | 94.0                               | The Public  | The Oro     |              |               |          |       |            |            |
|                           |                                    |             | Co. Co.     | Slons or o   | 2             |          |       |            |            |
|                           |                                    |             |             | "No          | Theral Order  |          |       |            |            |
|                           |                                    |             |             |              | 7             | 50°C     |       |            |            |
|                           |                                    |             |             |              |               |          |       |            |            |



 Southern California Gas Company
 Date Received:
 11/14/15

 M.L. 723B, P.O. Box 513249, Terminal Annex
 Work Order:
 15-11-1098

 Los Angeles, CA 90051-1249
 Preparation:
 EPA 5030C

 Method:
 EPA 8260B

Project: TS2015-C013 / Aliso Canyon Page 7 of 7

| Quality Control Sample ID   | Type            |                | Matrix             | Inst        | rument       | Date Prepared              | Date Ana | lyzed | MS/MSD Bat | ch Number  |
|-----------------------------|-----------------|----------------|--------------------|-------------|--------------|----------------------------|----------|-------|------------|------------|
| 15-11-0763-4                | Sample          |                | Solid              | GC          | MS W         | 11/11/15                   | 11/14/15 | 14:09 | 1511145002 |            |
| 15-11-0763-4                | Matrix Spike    |                | Solid              | GC          | MS W         | 11/11/15                   | 11/14/15 | 15:33 | 1511145002 |            |
| 15-11-0763-4                | Matrix Spike    | Duplicate      | Solid              | GC/         | MS W         | 11/11/15                   | 11/14/15 | 16:00 | 1511145002 |            |
| Parameter                   | Sample<br>Conc. | Spike<br>Added | MS<br>Conc.        | MS<br>%Rec. | MSD<br>Conc. | MSD<br>%Rec.               | %Rec. CL | RPD   | RPD CL     | Qualifiers |
| Benzene                     | ND.             | 25000          | 26090              | 104         | 26260        | 105                        | 61-127   | 1     | 0-20       |            |
| Carbon Tetrachloride        | CONDO           | 25000          | 24130              | 97          | 24850        | 99                         | 51-135   | 3     | 0-29       |            |
| Chlorobenzene               | ND CO           | 25000          | 24870              | 99          | 24890        | 100                        | 57-123   | 0     | 0-20       |            |
| 1,2-Dibromoethane           | NDO             | 25000          | 25110              | 100         | 25200        | 101                        | 64-124   | 0     | 0-20       |            |
| 1,2-Dichlorobenzene         | ND 0            | 25000          | 25430              | 102         | 25370        | 101                        | 35-131   | 0     | 0-25       |            |
| 1,2-Dichloroethane          | ND              | 250000         | 25410              | 102         | 25580        | 102                        | 80-120   | 1     | 0-20       |            |
| 1,1-Dichloroethene          | ND              | 25000          | 26710              | 107         | 26690        | 107                        | 47-143   | 0     | 0-25       |            |
| Ethylbenzene                | 15560           | 25000          | 39850              | 97          | 40250        | 99                         | 57-129   | 1     | 0-22       |            |
| Toluene                     | ND              | 25000          | 25700              | 103         | 25760        | 103                        | 63-123   | 0     | 0-20       |            |
| Trichloroethene             | ND              | 25000          | 25940 <sup>C</sup> | 11940       | 25920        | 104                        | 44-158   | 0     | 0-20       |            |
| Vinyl Chloride              | ND              | 25000          | 22810              | 191 0       | 22840        | 91                         | 49-139   | 0     | 0-47       |            |
| p/m-Xylene                  | ND              | 50000          | 50810              | 1020        | 50680        | 101                        | 70-130   | 0     | 0-30       |            |
| o-Xylene                    | ND              | 25000          | 24440              | 98 0        | 24460        | 98                         | 70-130   | 0     | 0-30       |            |
| Methyl-t-Butyl Ether (MTBE) | ND              | 25000          | 25190              | 101         | © 24950      | 100                        | 57-123   | 1     | 0-21       |            |
|                             |                 |                |                    |             | 0            | 98<br>100<br>Seneral Order |          |       |            |            |
|                             |                 |                |                    |             |              |                            | 26.C     |       |            |            |
|                             |                 |                |                    |             |              |                            |          |       |            |            |



## Quality Control - Sample Duplicate

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order:

15-11-1098 N/A

Method:

Preparation:

EPA 1010A(M)

Page 1 of 5

| Quality Control Sample ID | Туре              | Matrix       | Instrument | Date Prepared | Date Analyzed  | Duplicate Batch Number |
|---------------------------|-------------------|--------------|------------|---------------|----------------|------------------------|
| Junction SS25&9           | Sample            | Sludge       | FP3        | N/A           | 11/14/15 16:00 | F1114FPD2              |
| Junction SS25&9           | Sample Duplicate  | Sludge       | FP3        | N/A           | 11/14/15 16:00 | F1114FPD2              |
| Parameter                 |                   | Sample Conc. | DUP Conc.  | RPD           | RPD CL         | Qualifiers             |
| Ignitability              | Connoliance Audit | >212         | >212       | 0             | 0-25           |                        |
|                           | Cana May          |              |            |               |                |                        |
|                           | mo eculia         |              |            |               |                |                        |
|                           | 100 07 S.         | 200          |            |               |                |                        |
|                           | ALL               | OF THE       |            |               |                |                        |
|                           | 017               | 1004         |            |               |                |                        |
|                           |                   | 45,00        | **         |               |                |                        |
|                           |                   | 160          | 200        |               |                |                        |
|                           |                   |              | Mic Ovio   |               |                |                        |
|                           |                   |              | Colons     |               |                |                        |
|                           |                   |              | 900        | · ·           |                |                        |
|                           |                   |              | 40%        | one.          |                |                        |
|                           |                   |              |            | 9/0           |                |                        |
|                           |                   |              |            | 100           |                |                        |
|                           |                   |              |            |               | 60             |                        |
|                           |                   |              |            |               | C.             |                        |
|                           |                   |              |            |               |                |                        |
|                           |                   |              |            |               |                |                        |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1098

N/A EPA 376.2M

Project: TS2015-C013 / Aliso Canyon

Page 2 of 5

| Quality Control Sample ID | Type              | Matrix       | Instrument  | Date Prepared  | Date Analyzed  | Duplicate Batch Number |
|---------------------------|-------------------|--------------|-------------|----------------|----------------|------------------------|
| Well Fluid                | Sample            | Sludge       | N/A         | 11/14/15 00:00 | 11/14/15 12:39 | F1114SD2               |
| Well Fluid                | Sample Duplicate  | Sludge       | N/A         | 11/14/15 00:00 | 11/14/15 12:39 | F1114SD2               |
| Parameter                 |                   | Sample Conc. | DUP Conc.   | RPD            | RPD CL         | Qualifiers             |
| Sulfide, Total            | Connollance Audit | ND           | ND          | N/A            | 0-25           |                        |
|                           | Plance Aux        | Submitte     |             |                |                |                        |
|                           | · Op              | the Public   | Th.         |                |                |                        |
|                           |                   | 6            | In Orovisio |                |                |                        |
|                           |                   |              | Code duri   | G.             |                |                        |
|                           |                   |              | 73          | oral Orac      |                |                        |
|                           |                   |              |             |                | e.c            |                        |
|                           |                   |              |             |                |                |                        |
|                           |                   |              |             |                |                |                        |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 N/A

Method:

EPA 9045D

Page 3 of 5

| Quality Control Sample ID | Туре              | Matrix       | Instrument | Date Prepared | Date Analyzed    | Duplicate Batch Number |
|---------------------------|-------------------|--------------|------------|---------------|------------------|------------------------|
| 15-11-1085-2              | Sample            | Solid        | PH 4       | 11/14/15 00:0 | 0 11/14/15 12:33 | F1114PHD2              |
| 15-11-1085-2              | Sample Duplicate  | Solid        | PH 4       | 11/14/15 00:0 | 0 11/14/15 12:33 | F1114PHD2              |
| <u>Parameter</u>          |                   | Sample Conc. | DUP Conc.  | RPD           | RPD CL           | Qualifiers             |
| рН                        | Connoliance Audit | 6,350        | 6.380      | 0             | 0-25             |                        |
|                           | TOO ALIGH         | or the Short |            |               |                  |                        |
|                           |                   | 4ble C       | the Oro.   |               |                  |                        |
|                           |                   |              | Code Code  |               |                  |                        |
|                           |                   |              | Starting   | General       |                  |                        |
|                           |                   |              |            | 1001          | 66 C             |                        |
|                           |                   |              |            |               |                  |                        |
|                           |                   |              |            |               |                  |                        |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 N/A

Method:

SM 4500-CIC

Project: TS2015-C013 / Aliso Canyon

Page 4 of 5

| Quality Control Sample ID<br>15-11-1099-1<br>15-11-1099-1 | Type Sample Sample Duplicate | Matrix Aqueous Aqueous | Instrument<br>BUR02<br>BUR02 | Date Prepared<br>N/A<br>N/A | Date Analyzed<br>11/14/15 12:06<br>11/14/15 12:06 |            | nber |
|-----------------------------------------------------------|------------------------------|------------------------|------------------------------|-----------------------------|---------------------------------------------------|------------|------|
| <u>Parameter</u><br>Chloride                              | Cond Section Section Se      | Sample Conc.<br>6103   | DUP Conc.<br>6103            | RPD<br>0                    | <u>RPD CL</u><br>0-25                             | Qualifiers |      |
|                                                           | Compliance Audit             | or the Dublic Off      | the Otovisions of            |                             |                                                   |            |      |
|                                                           |                              |                        | during                       | General Order               | R.C.                                              |            |      |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received: Work Order:

Preparation: Method:

11/14/15 15-11-1098

N/A

SM 4500-CI C Page 5 of 5

Project: TS2015-C013 / Aliso Canyon

Matrix Date Prepared Date Analyzed Duplicate Batch Number Quality Control Sample ID Instrument Type Well Fluid Sample Sludge BUR02 11/14/15 00:00 11/14/15 12:48 F1114CLCD1 Compliance Allow of the Public Utilities Code during Code of Code of the Public Utilities Code of Code of the Public Utilities Code Well Fluid Sample Duplicate BUR02 11/14/15 00:00 11/14/15 12:48 F1114CLCD1 Sludge RPD Parameter RPD CL

Chloride



### Quality Control - LCS/LCSD

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 N/A

Method:

EPA 376.2M

Project: TS2015-C013 / Aliso Canyon

Page 1 of 9

| Quality Control Sample ID | Type        | Mat        | trix         | Instrument  | Date Pre      | epared Da | te Analyzed  | LCS/LCSD E | Batch Number |
|---------------------------|-------------|------------|--------------|-------------|---------------|-----------|--------------|------------|--------------|
| 099-05-001-5592           | LCS         | Sol        | id           | N/A         | 11/14/15      | 5 11      | /14/15 12:39 | F1114SL2   |              |
| 099-05-001-5592           | LCSD        | Sol        | id           | N/A         | 11/14/15      | 5 11      | /14/15 12:39 | F1114SL2   | A            |
| Parameter                 | Spike Added | LCS Conc.  | LCS<br>%Rec. | LCSD Conc.  | LCSD<br>%Rec. | %Rec. C   | L RPD        | RPD CL     | Qualifiers   |
| Sulfide, Total            | Spike Added | 0.8000     | 80           | 0,8500      | 85            | 80-120    | 6            | 0-20       |              |
|                           | Jance 4     | SES OF HIS | 00           |             |               |           |              |            |              |
|                           |             | ,          | Ouble !      | tho.        |               |           |              |            |              |
|                           |             |            | N.           | The Chiston |               |           |              |            |              |
|                           |             |            |              | ode dr      | Or Gen        |           |              |            |              |
|                           |             |            |              |             | 0 0           | Orgo      |              |            |              |
|                           |             |            |              |             |               | 50%       | 2°C          |            |              |
|                           |             |            |              |             |               |           |              |            |              |
|                           |             |            |              |             |               |           |              |            |              |



### Quality Control - LCS/LCSD

Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1098 N/A

Method:

EPA 9010C/9014

Page 2 of 9

| Project: TS2015-C013 / Alis | o Canyon |
|-----------------------------|----------|
|-----------------------------|----------|

| Quality Control Sample ID | Type                                             | Mat       | rix          | Instrument    | Date Pro      | epared Dat | e Analyzed | LCS/LCSD B | atch Number |
|---------------------------|--------------------------------------------------|-----------|--------------|---------------|---------------|------------|------------|------------|-------------|
| 099-12-810-1003           | LCS                                              | Sol       | id           | UV 8          | 11/14/18      | 5 11/      | 4/15 12:09 | F1114CNL1  |             |
| 099-12-810-1003           | LCSD                                             | Sol       | id           | UV 8          | 11/14/15      | 5 11/      | 4/15 12:09 | F1114CNL1  |             |
| Parameter                 | Spike Added                                      | LCS Conc. | LCS<br>%Rec. | LCSD Conc.    | LCSD<br>%Rec. | %Rec. CL   | RPD        | RPD CL     | Qualifiers  |
| Cyanide, Total            | 0.2000<br>Condo Section                          | 0.1680    | 84           | 0.1720        | 86            | 80-120     | 2          | 0-20       |             |
|                           | Spike Added  0.2000  Stroy Stroy  Composition  A | SES OTHE  | outle of     | the o         |               |            |            |            |             |
|                           |                                                  |           | ~,           | Intes Code of | 0,0           |            |            |            |             |
|                           |                                                  |           |              | 4,            | The Per       | Order      |            |            |             |
|                           |                                                  |           |              |               |               | 6          | 0          |            |             |
|                           |                                                  |           |              |               |               |            |            |            |             |



Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received: Work Order: 11/14/15 15-11-1098

Preparation:

EPA 3550B

Method:

EPA 8015B (M)

Page 3 of 9

| Quality Control Sample ID | Type      | Matrix                            | Instrument  | Date Prepared | Date Analyzed  | LCS Batch Num | ber     |
|---------------------------|-----------|-----------------------------------|-------------|---------------|----------------|---------------|---------|
| 99-15-490-1869            | LCS       | Solid                             | GC 47       | 11/14/15      | 11/14/15 14:58 | 151114B02     |         |
| Parameter                 |           | Spike Added                       | Conc. Recov |               |                |               | lifiers |
| TPH as Diesel             |           | 400.0                             | 432.7       | 108           | 75-12          | 3             |         |
|                           | C.        |                                   |             |               |                |               |         |
|                           | Ong mo    |                                   |             |               |                |               |         |
|                           | On Sen    | Acon Ses Obnitted and a stable of |             |               |                |               |         |
|                           | Charle Ch | 258/50                            |             |               |                |               |         |
|                           | Co.       | Se 902                            |             |               |                |               |         |
|                           |           | Low OF They                       |             |               |                |               |         |
|                           |           | 100 45                            |             |               |                |               |         |
|                           |           | 45,00                             | A           |               |                |               |         |
|                           |           | "Ic                               | 30          |               |                |               |         |
|                           |           |                                   | The Color   |               |                |               |         |
|                           |           |                                   | 0000        |               |                |               |         |
|                           |           |                                   | 0000        | On            |                |               |         |
|                           |           |                                   | 90          | ~ G           |                |               |         |
|                           |           |                                   |             | no non        |                |               |         |
|                           |           |                                   |             | 9/0.          |                |               |         |
|                           |           |                                   |             | .0            | O <sub>A</sub> |               |         |
|                           |           |                                   |             |               | So _           |               |         |
|                           |           |                                   |             |               | C              |               |         |
|                           |           |                                   |             |               |                |               |         |
|                           |           |                                   |             |               |                |               |         |
|                           |           |                                   |             |               |                |               |         |



### Quality Control - LCS/LCSD

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received: Work Order: 11/14/15

15-11-1098 EPA 3510C

Preparation: Method:

EPA 8015B (M)

14141114

Page 4 of 9

| Type        | N            | latrix         | Instrument               | Date Fre                             | epared 1                                               | Date Analyzed                                          | LCS/LCSD B                                                                              | atch Number                                                                                                |
|-------------|--------------|----------------|--------------------------|--------------------------------------|--------------------------------------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| LCS         | A            | queous         | GC 47                    | 11/14/15                             |                                                        | 11/14/15 14:21                                         | 151114B01                                                                               |                                                                                                            |
| LCSD        |              | queous         | GC 47                    | 11/14/15                             |                                                        | 11/14/15 14:40                                         | 151114B01                                                                               |                                                                                                            |
| Spike Added | LCS Con      | . LCS<br>%Rec. | LCSD Conc.               | LCSD<br>%Rec.                        | %Rec.                                                  | CL RPD                                                 | RPD CL                                                                                  | Qualifiers                                                                                                 |
| 2000 ONTAGE | 1822         | 91             | 1962                     | 98                                   | 75-117                                                 | 7                                                      | 0-13                                                                                    |                                                                                                            |
| 7,          | A CONTRACTOR | Red Under Of   | the of Ovision           |                                      |                                                        |                                                        |                                                                                         |                                                                                                            |
|             |              |                | OCE OU                   | of General                           | On                                                     |                                                        |                                                                                         |                                                                                                            |
|             | LCS<br>LCSD  | LCS A          | LCS Aqueous LCSD Aqueous | LCS Aqueous GC 47 LCSD Aqueous GC 47 | LCS Aqueous GC 47 11/14/18 LCSD Aqueous GC 47 11/14/18 | LCS Aqueous GC 47 11/14/15 LCSD Aqueous GC 47 11/14/15 | LCS Aqueous GC 47 11/14/15 11/14/15 14:21<br>LCSD Aqueous GC 47 11/14/15 11/14/15 14:40 | LCS Aqueous GC 47 11/14/15 11/14/15 14:21 1511114B01 LCSD Aqueous GC 47 11/14/15 11/14/15 14:40 1511114B01 |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Los Angeles, CA 90051-1249

Date Received: Work Order:

Preparation: Method: 11/14/15 15-11-1098

EPA 3050B

EPA 6010B

Page 5 of 9

| Quality Control Sample ID       | Туре       | Matrix         | Instrumen       | t Date Prep               | ared Date Ana | lyzed LCS Batch N | lumber     |
|---------------------------------|------------|----------------|-----------------|---------------------------|---------------|-------------------|------------|
| 097-01-002-22051                | LCS        | Solid          | ICP 7300        | 11/14/15                  | 11/14/15      | 14:01 151114L01   |            |
| Parameter                       |            | Spike Added    | Conc. Recovered | LCS %Rec.                 | %Rec. CL      | ME CL             | Qualifiers |
| Antimony                        |            | 25.00          | 25.05           | 100                       | 80-120        | 73-127            |            |
| Arsenic                         | ~          | 25,00          | 24,83           | 99                        | 80-120        | 73-127            |            |
| Barium                          | 500        | 25.00          | 26.24           | 105                       | 80-120        | 73-127            |            |
| Beryllium                       | Cha lide   | 25.00          | 23.97           | 96                        | 80-120        | 73-127            |            |
| Cadmium                         | Compliance | 25.00          | 25.28           | 101                       | 80-120        | 73-127            |            |
| Chromium                        | 10/2 9/10  | 25.00<br>25.00 | 26.36           | 105                       | 80-120        | 73-127            |            |
| Cobalt                          | ano.       | 25.00          | 27.01           | 108                       | 80-120        | 73-127            |            |
| Copper                          | -0         | 25.00          | 25.68           | 103                       | 80-120        | 73-127            |            |
| Lead                            |            | 25,00          | 25.50           | 102                       | 80-120        | 73-127            |            |
| Molybdenum                      |            | 25.00          | 25.66           | 103                       | 80-120        | 73-127            |            |
| Nickel                          |            | 25,00          | 2627            | 109                       | 80-120        | 73-127            |            |
| Selenium                        |            | 25.00          | /23.89/         | 96                        | 80-120        | 73-127            |            |
| Silver                          |            | 12.50          | 12.52           | 100                       | 80-120        | 73-127            |            |
| Thallium                        |            | 25.00          | 26.621 0 Visi   | 106                       | 80-120        | 73-127            |            |
| Vanadium                        |            | 25.00          | 25.81           | 103                       | 80-120        | 73-127            |            |
| Zinc                            |            | 25.00          | 24.47           | 98                        | 80-120        | 73-127            |            |
| Calcium                         |            | 25.00          | 27.02           | 0108                      | 80-120        | 73-127            |            |
|                                 |            |                |                 | 103<br>98<br>0108 General |               |                   |            |
| Total number of LCS compounds:  | 17         |                |                 | of the General            |               |                   |            |
| Total number of ME compounds: 0 | I .        |                |                 | "                         | 0             |                   |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received: Work Order:

Preparation: Method: 11/14/15 15-11-1098

EPA 3010A Total

EPA 6010B

Page 6 of 9

| 097-01-003-15490               | Type<br>LCS    | Aqueou      | IS ICP 7300                                  | 11/14/15                        | 11/14/15 | 15:28 151114LA1 |            |
|--------------------------------|----------------|-------------|----------------------------------------------|---------------------------------|----------|-----------------|------------|
| <u>Parameter</u>               | 5              | Spike Added | Conc. Recovered                              | LCS %Rec.                       | %Rec. CL | ME CL           | Qualifiers |
| Antimony                       |                | 0.5000      | 0.4934                                       | 99                              | 80-120   | 73-127          |            |
| Arsenic                        |                | 0.5000      | 0.4915                                       | 98                              | 80-120   | 73-127          |            |
| Barium                         | 5 CO C         | 0.5000      | 0.5183                                       | 104                             | 80-120   | 73-127          |            |
| Beryllium                      | and the        | 0.5000      | 0.4960                                       | 99                              | 80-120   | 73-127          |            |
| Cadmium                        | Cornollance of | 5000        | 0.5043                                       | 101                             | 80-120   | 73-127          |            |
| Chromium                       | 10/12/10       | .sooo       | 0.5112                                       | 102                             | 80-120   | 73-127          |            |
| Cobalt                         | an or          | 5000        | 0.5300                                       | 106                             | 80-120   | 73-127          |            |
| Copper                         | -0             | noon 1      | 0.4964                                       | 99                              | 80-120   | 73-127          |            |
| Lead                           | 6              | 0.5000      | 0.5036                                       | 101                             | 80-120   | 73-127          |            |
| Molybdenum                     | C              | 0.5000      | 0.4862                                       | 97                              | 80-120   | 73-127          |            |
| Nickel                         |                | 0.5000      | 6.5177                                       | 104                             | 80-120   | 73-127          |            |
| Selenium                       | C              | 0.5000      | 0,4805                                       | 96                              | 80-120   | 73-127          |            |
| Silver                         | 0              | 0.2500      | 0.2518                                       | 101                             | 80-120   | 73-127          |            |
| Thallium                       | C              | 0.5000      | 0.5356 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 | 107                             | 80-120   | 73-127          |            |
| Vanadium                       | C              | 0.5000      | 0.5029                                       | 101                             | 80-120   | 73-127          |            |
| Calcium                        | 0              | 0.5000      | 0.4929                                       | 99                              | 80-120   | 73-127          |            |
| Zinc                           | 1.0            | 0.5000      | 0.4923                                       | 28° G                           | 80-120   | 73-127          |            |
| Fotal number of LCS compound   | ls: 17         |             |                                              | 107<br>101<br>198<br>98 General |          |                 |            |
| otal number of ME compounds    |                |             |                                              | 4/                              | 0.       |                 |            |
| Total number of ME compounds   | allowed: 1     |             |                                              |                                 | 90       |                 |            |
| CS ME CL validation result: Pa | ess            |             |                                              |                                 | 62       |                 |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

Method:

15-11-1098 EPA 7470A Total

**EPA 7470A** Page 7 of 9

Project: TS2015-C013 / Aliso Canyon

| Type     | Matrix        | Instrument              | Date Frepare                                   | ed Date Analyzed                                                  | LCS Batch Number                                                                                                                                                     |
|----------|---------------|-------------------------|------------------------------------------------|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| LCS      | Aqueous       | Mercury 04              | 11/13/15                                       | 11/13/15 18:31                                                    | 151113LA3                                                                                                                                                            |
|          | Spike Added   |                         |                                                |                                                                   |                                                                                                                                                                      |
| Cond See | 370           | 0.01003                 | 107                                            | 33-12                                                             |                                                                                                                                                                      |
| Oliance  | On Ses Honing |                         |                                                |                                                                   |                                                                                                                                                                      |
|          | The Public C  | the o                   |                                                |                                                                   |                                                                                                                                                                      |
|          |               | The Code one            | O.*                                            |                                                                   |                                                                                                                                                                      |
|          |               | QUE                     | General O                                      |                                                                   |                                                                                                                                                                      |
|          |               |                         |                                                | dor Sc.C                                                          |                                                                                                                                                                      |
|          |               |                         |                                                |                                                                   |                                                                                                                                                                      |
|          | LCS           | LCS Aqueous Spike Added | LCS Aqueous Mercury 04 Spike Added Conc. Recov | LCS Aqueous Mercury 04 11/13/15 Spike Added Conc. Recovered LCS % | LCS         Aqueous         Mercury 04         11/13/15         11/13/15         18:31           Spike Added         Conc. Recovered         LCS %Rec.         %Rec. |



Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1098 EPA 7471A Total

Method:

EPA 7471A

iotiloa.

Page 8 of 9

Project: TS2015-C013 / Aliso Canyon

| Type        | Matrix                | Instrument                  | Date F                                        | repared 1                                              | Date Ana                                                                                                                   | lyzed                                                                                                                                  | LCS Batch                                                                                                                                                  | Number                                                                                                |
|-------------|-----------------------|-----------------------------|-----------------------------------------------|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|
| LCS         | Solid                 | Mercury 05                  | 11/13/                                        | 15                                                     | 11/14/15                                                                                                                   | 15:23                                                                                                                                  | 151113L02                                                                                                                                                  | 1                                                                                                     |
| Cond Plate  | Spike Added<br>0.8350 |                             |                                               | V                                                      |                                                                                                                            |                                                                                                                                        |                                                                                                                                                            | Qualifiers                                                                                            |
| Tholiance ( | Nak Submitted Under   |                             |                                               |                                                        |                                                                                                                            |                                                                                                                                        |                                                                                                                                                            |                                                                                                       |
|             | ole C                 | the ordinate of the code of | 2,0                                           |                                                        |                                                                                                                            |                                                                                                                                        |                                                                                                                                                            |                                                                                                       |
|             |                       | . 40                        | To One                                        | ral Order                                              | 52                                                                                                                         |                                                                                                                                        |                                                                                                                                                            |                                                                                                       |
|             | LCS                   | LCS Solid Spike Added       | LCS Solid Mercury 05 Spike Added Conc. Recove | LCS Solid Mercury 05 11/13 Spike Added Conc. Recovered | LCS         Solid         Mercury 05         11/13/15           Spike Added         Conc. Recovered         LCS %Recovered | LCS         Solid         Mercury 05         11/13/15         11/14/15           Spike Added         Conc. Recovered         LCS %Rec. | LCS         Solid         Mercury 05         11/13/15         11/14/15 15:23           Spike Added         Conc. Recovered         LCS %Rec.         %Rec. | LCS Solid Mercury 05 11/13/15 11/14/15 15:23 151113L02 Spike Added Conc. Recovered LCS %Rec. %Rec. CL |



Southern California Gas Company

Project: TS2015-C013 / Aliso Canyon

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation:

15-11-1098 **EPA 5030C** 

Method:

**EPA 8260B** 

Page 9 of 9

| 99-12-796-10429 LC:<br>Parameter     | S Solie                 | GC/MS W         | 2272 4742 | A RESIDENCE OF STREET |               |            |
|--------------------------------------|-------------------------|-----------------|-----------|-----------------------|---------------|------------|
| arameter arameter                    |                         | GC/IVIS VV      | 11/14/15  | 11/14/15 10:2         | 25 151114L007 |            |
|                                      | Spike Added             | Conc. Recovered | LCS %Rec. | %Rec. CL              | ME CL         | Qualifiers |
| enzene                               | 50.00                   | 52.42           | 105       | 78-120                | 71-127        |            |
| Carbon Tetrachlorida                 | 50,00                   | 54.16           | 108       | 49-139                | 34-154        |            |
| Chlorobenzene                        | 50.00                   | 51.64           | 103       | 79-120                | 72-127        |            |
| ,2-Dibromoethane                     | 7 70 50.00              | 49.47           | 99        | 80-120                | 73-127        |            |
| ,2-Dichlorobenzene                   | \$0.00                  | 51.28           | 103       | 75-120                | 68-128        |            |
| ,2-Dichloroethane                    | 50:00<br>50:00<br>50:00 | 50.81           | 102       | 80-120                | 73-127        |            |
| ,1-Dichloroethene                    | 30.00                   | 56.50           | 113       | 74-122                | 66-130        |            |
| thylbenzene                          | 50.00                   | 53.52           | 107       | 76-120                | 69-127        |            |
| oluene                               | 50,00 %                 | 53.05           | 106       | 77-120                | 70-127        |            |
| richloroethene                       | 50.00                   | ₹53.68          | 107       | 80-120                | 73-127        |            |
| /inyl Chloride                       | 50,00                   | 49.21           | 98        | 68-122                | 59-131        |            |
| /m-Xylene                            | 100.0                   | 1406.05         | 106       | 75-125                | 67-133        |            |
| -Xylene                              | 50.00                   | 50.52           | 101       | 75-125                | 67-133        |            |
| Methyl-t-Butyl Ether (MTBE)          | 50.00                   | 48.09 1 CS Vis  | 96        | 75-125<br>77-120      | 70-127        |            |
| otal number of LCS compounds: 14     |                         | Co              | 25000     |                       |               |            |
| otal number of ME compounds: 0       |                         | G.              | 2, 6      |                       |               |            |
| otal number of ME compounds allowed: |                         |                 | Arla Cha  |                       |               |            |
| CS ME CL validation result: Pass     |                         |                 | S 65      |                       |               |            |
|                                      |                         |                 | **        | 0.                    |               |            |
|                                      |                         |                 |           | 00                    |               |            |
|                                      |                         |                 |           | 50                    |               |            |
|                                      |                         |                 |           | 0                     |               |            |
|                                      |                         |                 |           | -                     |               |            |



### Sample Analysis Summary Report

| Work Order: 15-11-1098 |                                 |            |            | Page 1 of 1         |
|------------------------|---------------------------------|------------|------------|---------------------|
| Method                 | Extraction                      | Chemist ID | Instrument | Analytical Location |
| EPA 1010A(M)           | N/A                             | 691        | FP3        | The second second   |
| EPA 376.2M             | N/A                             | 880        | N/A        | 1                   |
| EPA 6010B              | EPA 3010A Total                 | 935        | ICP 7300   | 1                   |
| EPA 6010B              | EPA 3050B                       | 935        | ICP 7300   | 1                   |
| EPA 7470A              | EPA 7470A Total                 | 915        | Mercury 04 | 3                   |
| EPA 7471A              | EPA 7471A Total                 | 915        | Mercury 05 | 1                   |
| EPA 8015B (M)          | EPA 3510C                       | 421        | GC 47      | 1                   |
| EPA 8015B (M)          | EPA 3550B                       | 421        | GC 47      | 1                   |
| EPA 8260B              | EPA 5030C                       | 927        | GC/MS W    | 2                   |
| EPA 9010C/9014         | 2 On N/A                        | 880        | UV8        | 1                   |
| EPA 9045D              | C Q ONA                         | 688        | PH 4       | 1                   |
| SM 4500-CI C           | On Sa NA                        | 688        | BUR02      | 1                   |
|                        | EPA 3550B EPA 5030C N/A N/A N/A | The Or     |            |                     |

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841



### Glossary of Terms and Qualifiers

| ork Order: | 15-11-1098 Page 1 of 1                                                                                                                                                                                                                                                                                                                                                              |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qualifiers | Definition                                                                                                                                                                                                                                                                                                                                                                          |
| *          | See applicable analysis comment                                                                                                                                                                                                                                                                                                                                                     |
| <          | Less than the indicated value.                                                                                                                                                                                                                                                                                                                                                      |
| >          | Greater than the indicated value                                                                                                                                                                                                                                                                                                                                                    |
| 1          | Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without furth clarification.                                                                                                                                                                                                                              |
| 2          | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                                                                                                                                                          |
| 3          | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. To associated LCS recovery was in control.                                                                                                                                                                                                      |
| 4          | The MS/MSD RPD was out of control due to suspected matrix interference                                                                                                                                                                                                                                                                                                              |
| 5          | The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                             |
| 6          | Surrogate recovery/below the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| 7          | Surrogate recovery above the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| В          | Analyle was present in the associated method blank.                                                                                                                                                                                                                                                                                                                                 |
| BU         | Sample analyzed after holding time expired                                                                                                                                                                                                                                                                                                                                          |
| BV         | Sample received after holding time expired.                                                                                                                                                                                                                                                                                                                                         |
| CI         | See case narrative.                                                                                                                                                                                                                                                                                                                                                                 |
| E          | Concentration exceeds the calibration range.                                                                                                                                                                                                                                                                                                                                        |
| ET         | Sample was extracted past end of recommended max. holding time.                                                                                                                                                                                                                                                                                                                     |
| HD         | The chromatographic pattern was inconsistent with the profile of the reference fuel standard.                                                                                                                                                                                                                                                                                       |
| HDH        | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).                                                                                                                                                                                                                  |
| HDL        | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons we also present (or detected).                                                                                                                                                                                                                    |
| 7          | Analyle was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                                                                                                                                                     |
| AL         | Analyle positively identified but quantitation is an estimate.                                                                                                                                                                                                                                                                                                                      |
| ME         | LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (254 SD from the mean).                                                                                                                                                                                                                                                                              |
| ND         | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                                                                                                                                                            |
| Q          | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                                                                                                                                                       |
| SG         | The sample extract was subjected to Silica Gel treatment prior to analysis.                                                                                                                                                                                                                                                                                                         |
| X          | % Recovery and/or RPD out-of-range,                                                                                                                                                                                                                                                                                                                                                 |
| Z          | Analyle presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                                                                                                                                              |
|            | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.                                                                                                                                                                                                           |
|            | Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. |
|            | A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.                                                                                           |

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

### Ex. I-7, page 54 of 85

## CHAIN OF CUSTODY FORM

1

# SOUTHERN CALIFORNIA GAS COMPANY - ENGINEERING ANALYSIS CENTER

SHIPPING ADDRESS - 8730 E. SLAUSON AVE. ML SC723B, PICO RIVERA, CA 90660-5100 - PHONE: (562)- 806-4344 STREET ADDRESS - 8101 ROSEMEAD BLVD, BLDG H, PICO RIVERA, CA 90660 - EMAIL: EACChemicalSection@Socalgas.com

| Sample Sample Preservative Container Type, WA  12. Samue WA  12. Samue WA  13. Samue WA  14. MA  14. MA  15. Samue WA  15. Samue WA  16. Samue WA  17. Samue WA  16. Samue WA  17. Samue WA  18. Samue |                  |                  |                  | The fact         | <b>S</b>                   |                | C            |                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|----------------------------|----------------|--------------|----------------------------------------------------------------------------------------------------|
| Shad ufists on Silviton pressone throng with the sound of | Sample I.D.      | Sampling<br>Date | Sampling<br>Time | Collected        | Sample<br>Container        | Sample         | Preservative |                                                                                                    |
| Lisolm 22- Soumer Dodge LOK  Lisolm Janes De Soume Sudge LOK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Epurpont Block   | seferfu          | 6:25 pm          | S. Paten         | 1x500L<br>1x250L<br>1x250L | Child Supplied | HVO2         | Tother Lulowide True Mark + K                                                                      |
| Jehnes 22 Seumes Shudze                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Wedl Flund       | -                | mook:9           |                  | 2. Shunger                 | hiney -        | λų           | pH, Flushpoint, TPH-CC.,<br>8260 VOL., TTL Metals<br>(YPTL), Sulfide, Cynmbe<br>Chloride, Potasium |
| Centeral Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Junitran SS25 49 | ->               | MI OS:9          | Quality Comments | 17 Sounce                  | Shalze         | KA!          |                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | \                | \                | General On       | \                          | 1              | 1            |                                                                                                    |

| Grand Rammerce Hallburn the Walls 0840 year lieus of Just 1 | Relinquished By (Print) | (Signature) | Company/<br>GasCo. Dept. | Date   | Time   | Received By (Signature) | Company/<br>GasCo. Dept. |
|-------------------------------------------------------------|-------------------------|-------------|--------------------------|--------|--------|-------------------------|--------------------------|
| ex 1/4/1/2 0840                                             | Gam Dullon              | SAM DACTOR  | 14                       | Malis  | 8:10 P | Paris Krumen Suil V     | mer CAC                  |
|                                                             | Mund Kamme              | 1/1/1       | - th                     | 1/4/1/ | 0800   | You Liws                | 53                       |
| 日本 日本 1 日                     |                         |             |                          |        |        | l                       |                          |

H:\Chem\Forms\Chain of Custody.xls



### SOUTHERN CALIFORNIA GAS COMPANY **Material Release Order**

44193 Release

FOR NON-M&S MATERIAL

| Supplier:     | In strict conformance with our Bl                                                                          | anket Purchase Order with | h your firm, the f | ollowing material is ordered. |
|---------------|------------------------------------------------------------------------------------------------------------|---------------------------|--------------------|-------------------------------|
|               | Restrictions: Do not produce or su<br>has expired or was canceled, or<br>Invoice as instructed on the Blan |                           |                    |                               |
| Ī             |                                                                                                            |                           | 7                  |                               |
|               | CALSCIENCE ENVIRONMENTAL<br>7440 LINCOLN WAY<br>GARDEN GROVE, CA 92641-14                                  |                           | T5:                | 2015-CO13<br>me Day-ASAP      |
| L             | SHAHID BAZZAK SC 7                                                                                         | -<br>23B                  | ] Su               | ne Day - ASA !                |
|               | P.O. BOX 513249<br>LOS ANGELES, CA 9005                                                                    | 10/12/0                   |                    | Date Wanted 11/14/15          |
| Quantity<br>3 | Epugant Black                                                                                              | Description Description   | n <u> </u>         |                               |
| _ 2           | Well Fluid                                                                                                 | · Control                 |                    |                               |
| _2            | Junetium 5525                                                                                              | 49                        | G                  |                               |
| _8            | Patriot 909                                                                                                | - "                       | 30 Dela            |                               |
|               |                                                                                                            |                           | Orderos            |                               |
| Special In    | PLEASE SHOW ABOVE RI                                                                                       | ELEASE NUMBER ON YO       | OUR INVOICE. T     | HANK YOU.                     |
| * Ru          |                                                                                                            | Potusium in m             | uetals, sce        | · Col.                        |
|               |                                                                                                            |                           |                    |                               |
|               |                                                                                                            |                           |                    |                               |
| SHAHID        |                                                                                                            | ACCT. OR W.O. NUMBER      | OR PROJ.           | 11/14/15                      |
| SUPERVISOR    |                                                                                                            | MATERIAL RECEIVED BY      | -                  | DATE                          |

ROUTING

WHITE - TO SUPPLIER
YELLOW - ON RECEIPT OF MATERIAL, TO
DISBURSEMENTS, M.L. 205V
PINK - ORIGINATOR'S COPY

FORM #3929NR REV 4/14

Page 49 of 49
WORK ORDER NUMBER: 15-11- 1098

### SAMPLE RECEIPT CHECKLIST

COOLER \_ / OF \_ /

| CLIENT: Gas Co.                                                                                                                                                                                                                                           |                                                            |                                             | DA                                                                | TE: 11                                         | 1 14     | / 201      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------|------------------------------------------------|----------|------------|
| TEMPERATURE: (Criteria: 0.0°C - 6.0°C, nor Thermometer ID: SC2 (CF:-0.4°C); Temperature Sample(s) outside temperature criteria (☐ Sample(s) outside temperature criteria (☐ Sample(s) received at ambient temperature Ambient Temperature: ☐ Air ☐ Filter | ure (w/o CF): 3.  PM/APM contacted bout received on ice/ch | 9 °C (w/ CF):<br>y;)<br>illed on same day o |                                                                   |                                                | Samp     |            |
| 0                                                                                                                                                                                                                                                         | esent but Not Intact<br>esent but Not Intact               | Not Present                                 | □ N/A<br>□ N/A                                                    |                                                | ed by: _ | 80<br>1050 |
| SAMPLE CONDITION: On Second                                                                                                                                                                                                                               |                                                            |                                             |                                                                   | Yes                                            | No       | N/A        |
| Chain-of-Custody (COC) document(s) receive                                                                                                                                                                                                                | ad with samples                                            |                                             | January and Company                                               | . P                                            |          |            |
| COC document(s) received complete                                                                                                                                                                                                                         |                                                            |                                             | 917911931919                                                      | . 12                                           |          |            |
| C No analysis sasyasted. C Nat collaggich                                                                                                                                                                                                                 | had Tille relienviel                                       | ad data II No ratio                         | iquished time                                                     | 9                                              |          |            |
| Sampler's name indicated on COC                                                                                                                                                                                                                           | Share of the same                                          | ******************                          | saussienten (                                                     | . 1                                            |          |            |
| Sample container label(s) consistent with CO                                                                                                                                                                                                              | c                                                          | ***********                                 | *******                                                           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,           |          |            |
| Sample container(s) intact and in good condit                                                                                                                                                                                                             | ion                                                        |                                             | *********                                                         | . 0                                            |          |            |
| Proper containers for analyses requested                                                                                                                                                                                                                  |                                                            | Carrie and                                  | economista e                                                      | . 0                                            |          |            |
| Sufficient volume/mass for analyses requeste                                                                                                                                                                                                              | ed                                                         | 0 0/                                        | *********                                                         | . 2                                            |          |            |
| Sampler's name indicated on COC                                                                                                                                                                                                                           | eived within 15-minut                                      | e holding time                              | ta transituati                                                    | ø                                              |          |            |
|                                                                                                                                                                                                                                                           |                                                            |                                             | ********                                                          | 🗖                                              |          | K          |
| ☐ pH ☐ Residual Chlorine ☐ Dissolved  Proper preservation chemical(s) noted on CO  Unpreserved aqueous sample(s) received  ☐ Volatile Organics ☐ Total Metals ☐ D                                                                                         | for certain analyses                                       | tainer                                      | 100°C                                                             | . 1                                            |          |            |
| Container(s) for certain analysis free of heads                                                                                                                                                                                                           |                                                            | ************                                | ******                                                            | 🗆                                              |          | D          |
| ☐ Volatile Organics ☐ Dissolved Gases (☐ Carbon Dioxide (SM 4500) ☐ Ferrous                                                                                                                                                                               | (RSK-175) ☐ Dissol                                         | ved Oxygen (SM 45                           | 500)                                                              |                                                |          |            |
| Tedlar™ bag(s) free of condensation                                                                                                                                                                                                                       |                                                            | 2                                           |                                                                   | П                                              |          | P          |
| CONTAINER TYPE:                                                                                                                                                                                                                                           |                                                            | (Trip Blar                                  | k Lot Numb                                                        | er:                                            |          |            |
| Aqueous: □ VOA □ VOAh □ VOAna₂ □ 10 □ 125PBznna □ 250AGB □ 250CGB □ 25 □ 500PB □ 1AGB □ 1AGBna₂ □ 1AGBs Solid: □ 4ozCGJ □ 8ozCGJ □ 16ozCGJ □ Air: □ Tedlar™ □ Canister □ Sorbent Tube Container: A = Amber, B = Bottle, C = Clear, E = E                  | 00CGBs                                                     | 125AGB                                      | GBh 125/<br>GB 1500AG<br>1 TerraCores <sup>©</sup><br>(rudgs ): / | AGBP D 500 C C C C C C C C C C C C C C C C C C | DAGJS  D |            |
| Preservative: $\mathbf{b}$ = buffered, $\mathbf{f}$ = filtered, $\mathbf{h}$ = HCI, $\mathbf{n}$ =                                                                                                                                                        | = HNO3, na = NaOH, na                                      | $1_2 = Na_2S_2O_3, p = H_3P$                | O4, Labele                                                        |                                                |          | 7.5        |
| $s = H_0 SO_4$ $u = ultra-pure zona = Zn$                                                                                                                                                                                                                 | VCH-CO-1- + NaOH                                           |                                             |                                                                   | Review                                         | ed by:   | 1050       |

2015-04-10 Revision



### Calscience



### WORK ORDER NUMBER: 15-11-1099

The difference

Analytical Report For



AIR SOIL WATER MARINE CHEMISTRY

Client: Southern California Gas Company

Client Project Name: T\$2015-C013 / Aliso Canyon
Attention: Sharid Razzak
M.b. 723B

P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

amande Porter

Approved for release on 11/16/2015 by: Amanda Porter Project Manager

ResultLink )

Email your PM )



Eurofins Calscience, Inc. (Calscience) certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analyses, if any, is attached to this report. The results in this report are limited to the sample(s) tested and any reproduction thereof must be made in its entirety. The client or recipient of this report is specifically prohibited from making material changes to said report and, to the extent that such changes are made, Calscience is not responsible, legally or otherwise. The client or recipient agrees to indemnify Calscience for any defense to any litigation which may arise.

CA FLAP ID: 2944 | ACLASS DID ELAP ID: ADE 1664 USO/IEC 17025 20051 | CSDLAC ID: 10109



### Contents

|       | Project Name: TS2015-C013 / Aliso Canyon Order Number: 15-11-1099 |    |
|-------|-------------------------------------------------------------------|----|
| ***** |                                                                   |    |
| 1     | Work Order Narrative                                              | 3  |
| 2     | Client Sample Data.                                               | 2  |
|       | 2.1 EPA 8015B (M) C6-C44 (Aqueous).                               | 4  |
|       | 2.2 EPA 6010B ICP Metals (Aqueous).                               | 6  |
|       | 2.3 EPA 7470A Mercury (Aqueous)                                   | 8  |
|       | 2.4 EDA 9260B Volotilo Organico (Aguacus)                         | 0  |
|       |                                                                   | 13 |
| 3     | Quality Control Sample Datas                                      | 1  |
|       | 3.1 MS/MSD                                                        | 4  |
|       | 3.2 Sample Duplicate 1                                            | 16 |
|       | 3.3 LCS/LCSD                                                      | 20 |
| 4     | Sample Analysis Summary                                           | 26 |
| 5     | Glossary of Terms and Qualifiers                                  | 27 |
| 6     | Chain-of-Custody/Sample Receipt Form2                             | 35 |
|       | Quin Gene                                                         |    |
|       | Al Org                                                            |    |
|       |                                                                   |    |
|       | C                                                                 |    |
|       |                                                                   |    |



### Work Order Narrative

Work Order: 15-11-1099 Page 1 of 1

### Condition Upon Receipt:

Samples were received under Chain-of-Custody (COC) on 11/14/15. They were assigned to Work Order 15-11-1099.

Unless otherwise noted on the Sample Receiving forms all samples were received in good condition and within the recommended EPA temperature criteria for the methods noted on the COC. The COC and Sample Receiving Documents are integral elements of the analytical report and are presented at the back of the report.

### **Holding Times:**

All samples were analyzed within prescribed holding times (HT) and/or in accordance with the Calscience Sample Acceptance Policy unless otherwise noted in the analytical report and/or comprehensive case narrative, if required.

Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time.

### **Quality Control:**

All quality control parameters (QC) were within established control limits except where noted in the QC summary forms or described further within this report.

### Subcontractor Information:

Unless otherwise noted below (or on the subcontract form), no samples were subcontracted.

### **Additional Comments:**

Air - Sorbent-extracted air methods (EPA TO-4A, EPA TO-10, EPA TO-13A, EPA TO-17): Analytical results are converted from mass/sample basis to mass/volume basis using client-supplied air volumes.

Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are always reported on a wet weight basis.

1



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15 Work Order: 15-11-1099

Preparation: Method:

**EPA 3510C** EPA 8015B (M)

Units:

ug/L

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

| Client Sample Number | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix                                 | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|-------------------------|------------------------|----------------------------------------|--------------|------------------|-----------------------|-------------|
| Patriot 909          | 15-11-1099-1-H          | 11/13/15<br>19:40      | Aqueous                                | GC 47        | 11/14/15         | 11/14/15<br>14:04     | 151114B01   |
| Parameter            | 0                       | Result                 | RL                                     |              | DF               | Qua                   | alifiers    |
| C6                   | 82 Ope                  | ND                     | 50                                     |              | 1.00             |                       |             |
| C7                   | C 0 0                   | ND                     | 50                                     |              | 1.00             |                       |             |
| C8                   | ma en ma                | 53                     | 50                                     |              | 1.00             |                       |             |
| C9-C10               | 13 10 138               | 450                    | 50                                     |              | 1.00             |                       |             |
| C11-C12              | 90 50 4b                | 580                    | 50                                     |              | 1.00             |                       |             |
| C13-C14              | 4 3 0                   | %_710                  | 50                                     |              | 1.00             |                       |             |
| C15-C16              | Compliance Audin Of the | °360                   | 50                                     |              | 1.00             |                       |             |
| C17-C18              | Compliance Audit of the | 4160                   | 50                                     |              | 1.00             |                       |             |
| C19-C20              |                         | 960 - 15<br>200 - 15   | 50                                     |              | 1.00             |                       |             |
| C21-C22              |                         | 260C                   | 50                                     |              | 1.00             |                       |             |
| C23-C24              |                         | 200                    | 0 50                                   |              | 1.00             |                       |             |
| C25-C28              |                         | 140                    | 50<br>50<br>50<br>50<br>50<br>50<br>50 |              | 1.00             |                       |             |
| C29-C32              |                         | 170                    | C 050                                  |              | 1.00             |                       |             |
| C33-C36              |                         | 91                     | 96 50                                  | 0.           | 1.00             |                       |             |
| C37-C40              |                         | ND                     | 86<br>50                               | G.           | 1.00             |                       |             |
| C41-C44              |                         | ND                     | 50                                     | mano         | 1.00             |                       |             |
| C6-C44 Total         |                         | 3800                   | 50                                     | ing eneral   | 1.00             |                       |             |
| Surrogate            |                         | Rec. (%)               | Co                                     | ntrol Limits | Qualifiers       |                       |             |
| n-Octacosane         |                         | 90                     | 68-                                    | 140          | 60°C             |                       |             |

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Southern California Gas Company

M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units:

11/14/15 15-11-1099

**EPA 3510C** 

EPA 8015B (M)

ug/L

Project: TS2015-C013 / Aliso Canyon

Page 2 of 2

| Client Sample Number | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix                                                                                                 | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|-------------------------|------------------------|--------------------------------------------------------------------------------------------------------|--------------|------------------|-----------------------|-------------|
| Method Blank         | 099-15-498-310          | N/A                    | Aqueous                                                                                                | GC 47        | 11/14/15         | 11/14/15<br>12:35     | 151114801   |
| <u>Parameter</u>     | 0                       | Result                 | RL                                                                                                     |              | DF               | Qua                   | lifiers     |
| C6                   | an ope                  | ND                     | 50                                                                                                     |              | 1.00             |                       |             |
| C7                   | C 0 0                   | ND                     | 50                                                                                                     |              | 1.00             |                       |             |
| C8                   | ma en ma                | ND                     | 50                                                                                                     |              | 1.00             |                       |             |
| C9-C10               | Compliance Audin of the | ND                     | 50                                                                                                     |              | 1.00             |                       |             |
| C11-C12              | 90 50 4b                | ND                     | 50                                                                                                     |              | 1.00             |                       |             |
| C13-C14              | A 3 3                   | ND                     | 50                                                                                                     |              | 1.00             |                       |             |
| C15-C16              | 10/4/10                 | CIND                   | 50                                                                                                     |              | 1.00             |                       |             |
| G17-G18              | 7                       | @ NRS                  | 50                                                                                                     |              | 1.00             |                       |             |
| C19-C20              |                         | NO CA                  | 50                                                                                                     |              | 1.00             |                       |             |
| C21-C22              |                         | NDC B                  | 50                                                                                                     |              | 1.00             |                       |             |
| C23-C24              |                         | ND 1/                  |                                                                                                        |              | 1.00             |                       |             |
| C25-C28              |                         | ND 3                   | 50<br>6<br>6<br>7<br>7<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8<br>8 |              | 1.00             |                       |             |
| C29-C32              |                         | ND                     | C 050                                                                                                  |              | 1.00             |                       |             |
| C33-C36              |                         | ND                     | 96 50                                                                                                  | Ox           | 1.00             |                       |             |
| C37-C40              |                         | ND                     | 86<br>50                                                                                               | G.           | 1.00             |                       |             |
| C41-C44              |                         | ND.                    | 50                                                                                                     | mano         | 1.00             |                       |             |
| C6-C44 Total         |                         | ND                     | 100                                                                                                    | ing charal   | 1.00             |                       |             |
| Surrogate            |                         | Rec. (%)               | Co                                                                                                     | ntrol Limits | Qualifiers       |                       |             |
| n-Octacosane         |                         | 95                     | 68-                                                                                                    | 140          | 60 C             |                       |             |

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Date Received: 11/14/15 Southern California Gas Company Work Order: 15-11-1099 M.L. 723B, P.O. Box 513249, Terminal Annex Preparation: EPA 3010A Total Los Angeles, CA 90051-1249 **EPA 6010B** Method:

Units:

Page 1 of 2

Project: TS2015-C013 / Aliso Canyon

mg/L

| Client Sample Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lab Sample<br>Number     | Date/Time<br>Collected | Matrix                                 | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|------------------------|----------------------------------------|------------|------------------|-----------------------|-------------|
| Patriot 909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15-11-1099-1-E           | 11/13/15<br>19:40      | Aqueous                                | ICP 7300   | 11/14/15         | 11/14/15<br>15:34     | 151114LA1   |
| Parameter Parame | 0                        | Result                 | RL                                     |            | DF               | Qua                   | lifiers     |
| Antimony                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | an one                   | ND                     | 0.0                                    | 150        | 1.00             |                       |             |
| Arsenic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C 0 00                   | 0.0113                 | 0.0                                    | 100        | 1.00             |                       |             |
| Barium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ma en Ma                 | 2,26                   | 0.0                                    | 100        | 1.00             |                       |             |
| Beryllium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 35 40 48                 | ND                     | 0.0                                    | 100        | 1.00             |                       |             |
| Cadmium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Co 50.46                 | 0.0557                 | 0.0                                    | 100        | 1_00             |                       |             |
| Chromium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Compliance Alidin of the | ND ND                  | 0.0                                    | 100        | 1.00             |                       |             |
| Cobalt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10/4 4/0                 | 0.0192                 | 0.0                                    | 100        | 1.00             |                       |             |
| Copper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0.118                  | 0.0                                    | 100        | 1.00             |                       |             |
| Lead                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | NB On                  | 0.0                                    | 100        | 1.00             |                       |             |
| Molybdenum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          | 0.0508                 | 0.0                                    | 100        | 1.00             |                       |             |
| Nickel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0 4 77 6 44            | 0.0                                    | 100        | 1.00             |                       |             |
| Selenium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | ND                     | 00 40.00                               | 150        | 1.00             |                       |             |
| Silver                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | 0.0185                 | 10 10 10 0.00 0.00 0.00 0.00 0.00 0.00 | 0500       | 1.00             |                       |             |
| Thallium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 0.0324                 | 90 00                                  | £50        | 1.00             |                       |             |
| Vanadium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                          | 0.242                  | · 60                                   | 1000       | 1.00             |                       |             |
| Zinc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                          | 0,957                  | 0.0                                    | fog Teral  | 1,00             |                       |             |
| Patriot 909                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 15-11-1099-1-E           | 11/13/15<br>19:40      | Aqueous                                | ICP 7300   | 11/14/15         | 11/14/15<br>15:33     | 151114LA1   |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          | Result                 | RL                                     |            | DP               | Qua                   | lifiers     |
| Calcium                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                          | 3260                   | 1.0                                    | 0          | 10.00            |                       |             |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

Work Order: Preparation:

Method: Units:

11/14/15 15-11-1099 EPA 3010A Total

**EPA 6010B** 

mg/L

Project: TS2015-C013 / Aliso Canyon

Page 2 of 2

| Client Sample Number | Lab Sample<br>Number    | Date/Time<br>Collected | Matrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Instrument | Date<br>Prepared     | Date/Time<br>Analyzed | QC Batch ID |
|----------------------|-------------------------|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------------|-----------------------|-------------|
| Method Blank         | 097-01-003-15490        | N/A                    | Aqueous                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ICP 7300   | 11/14/15             | 11/14/15<br>15:26     | 151114LA1   |
| Parameter            | 0                       | Result                 | RL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | DF                   | Qua                   | lifiers     |
| Antimony             | 8000 M                  | ND                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 150        | 1.00                 |                       |             |
| Arsenic              | C 0 0                   | ND                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Barium               | man on Ma               | ND                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Beryllium            | 13 10 15                | ND                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Cadmium              | Go 50 46                | ND                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Chromium             | Conpliance Audit of the | ND                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Cobalt               | 10 HO.                  | CND                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Copper               | 16                      | NDO                    | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Lead                 |                         | NO C                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1.00                 |                       |             |
| Molybdenum           |                         | ND C                   | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100        | 1_00                 |                       |             |
| Nickel               |                         | ND Y                   | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | 100        | 1.00                 |                       |             |
| Selenium             |                         | ND "                   | 6 40.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 150        | 1.00                 |                       |             |
| Silver               |                         | ND                     | C 980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0500       | 1.00                 |                       |             |
| Thallium             |                         | ND                     | 900.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A-50       | 1.00                 |                       |             |
| Vanadium             |                         | ND                     | 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1000       | 1.00                 |                       |             |
| Calcium              |                         | ND                     | 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1000 C     | 1.00                 |                       |             |
| Zinc                 |                         | ND                     | 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 9/     | 1.00<br>1.00<br>1.00 |                       |             |
|                      |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 00                   |                       |             |
|                      |                         |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 000                  |                       |             |

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



| Southern California Gas Co | ompany                                    |                        | Date Recei            | ved:         |                  |                       | 11/14/15      |
|----------------------------|-------------------------------------------|------------------------|-----------------------|--------------|------------------|-----------------------|---------------|
| M.L. 723B, P.O. Box 51324  | 19, Terminal Annex                        |                        | Work Order            |              | 15-11-1099       |                       |               |
| Los Angeles, CA 90051-12   | 49                                        |                        | Preparation           | 1:           |                  | EP                    | A 7470A Total |
|                            |                                           |                        | Method:               |              |                  |                       | EPA 7470A     |
|                            |                                           |                        | Units:                |              |                  |                       | mg/L          |
| Project: TS2015-C013 / Ali | so Canyon                                 |                        |                       |              |                  | Pa                    | ige 1 of 1    |
| Client Sample Number       | Lab Sample<br>Number                      | Date/Time<br>Collected | Matrix                | Instrument   | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID   |
| Patriot 909                | 15-11-1099-1-E                            | 11/13/15<br>19:40      | Aqueous               | Mercury 04   | 11/14/15         | 11/14/15<br>13:59     | 151113LA3     |
| Parameter                  | 0                                         | Result                 | RL                    |              | DF               | Qua                   | alifiers      |
| Mercury                    | O PROPRIO                                 | ND                     | 0.0                   | 000500       | 1.00             |                       |               |
| Method Blank               | 089-04-608-7657                           | N/A                    | Aqueous               | Mercury 04   | 11/13/15         | 11/13/15<br>18:29     | 151113LA3     |
| Parameter                  | 970 7 0 VA                                | Result                 | t RL DF               |              | DF               | Qua                   | alifiers      |
|                            | On 10 10 10 10 10 10 10 10 10 10 10 10 10 | & DUBIC CHIII          | de provisions Code du | or General C | à.               |                       |               |
|                            |                                           |                        |                       |              | PORC.            |                       |               |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



Date Received: 11/14/15 Southern California Gas Company Work Order: 15-11-1099 M.L. 723B, P.O. Box 513249, Terminal Annex Preparation: **EPA 5030C** Los Angeles, CA 90051-1249 **EPA 8260B** Method: Units: ug/L

Project: TS2015-C013 / Aliso Canyon

Page 1 of 4

| Client Sample Number        | Lab Sample<br>Number              | Date/Time<br>Collected | Matrix   | Instrument      | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|-----------------------------|-----------------------------------|------------------------|----------|-----------------|------------------|-----------------------|-------------|
| Patriot 909                 | Connolished Audin Original States | 11/13/15<br>19:40      | Aqueous  | GC/MS XX        | 11/14/15         | 11/14/15<br>17:11     | 151114L001  |
| Parameter                   | 0                                 | Result                 | RL       | 7               | DF               | Qua                   | lifiers     |
| Acetone                     | 0000                              | ND                     | 20       |                 | 1.00             |                       |             |
| Benzene                     | C 0 0                             | ND                     | 0.5      | 50              | 1.00             |                       |             |
| Bromobenzene                | ma con ma                         | ND                     | 1.0      | )               | 1.00             |                       |             |
| Bromochloromethane          | 10 10 10                          | ND                     | 1.0      | )               | 1.00             |                       |             |
| Bromodichloromethane        | 90 50 4b                          | ND                     | 1.0      | )               | 1.00             |                       |             |
| Bromoform                   | 4.000                             | ND ND                  | 1.0      | )               | 1.00             |                       |             |
| Bromomethane                | 10/4 1/6                          | COND                   | 10       |                 | 1.00             |                       |             |
| 2-Butanone                  | 7                                 | ( ND)                  | 10       |                 | 1.00             |                       |             |
| n-Butylbenzene              |                                   | 6% C                   | 1.0      | )               | 1.00             |                       |             |
| sec-Butylbenzene            |                                   | 150                    | 0 1.0    | )               | 1.00             |                       |             |
| ert-Butylbenzene            |                                   | ND W                   | 0 1.0    | )               | 1.00             |                       |             |
| Carbon Disulfide            |                                   | ND 3                   | O. 40.10 |                 | 1.00             |                       |             |
| Carbon Tetrachloride        |                                   | ND                     | C 985    | 50              | 1.00             |                       |             |
| Chlorobenzene               |                                   | ND                     | 90 19    | lo <sub>v</sub> | 1.00             |                       |             |
| Chloroethane                |                                   | ND                     | 80       | G.              | 1.00             |                       |             |
| Chloroform                  |                                   | ND                     | 1.0      | The cho         | 1.00             |                       |             |
| Chloromethane               |                                   | ND                     | 10       | 16. A           | 1.00             |                       |             |
| 2-Chlorotoluene             |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| 4-Chlorotoluene             |                                   | ND                     | 1.0      | )               | 1.00             |                       |             |
| Dibromochloromethane        |                                   | ND                     | 1.0      | )               | 600              |                       |             |
| 1,2-Dibromo-3-Chloropropane |                                   | ND                     | 5.0      | )               | 1.000            |                       |             |
| 1,2-Dibromoethane           |                                   | ND                     | 1.0      | )               | 1.00             |                       |             |
| Dibromomethane              |                                   | ND                     | 1.0      | )               | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| ,3-Dichlorobenzene          |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| ,4-Dichlorobenzene          |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| Dichlorodifluoromethane     |                                   | ND                     | 1.0      | )               | 1.00             |                       |             |
| ,1-Dichloroethane           |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| ,2-Dichloroethane           |                                   | ND                     | 0.5      | 50              | 1.00             |                       |             |
| ,1-Dichlaroethene           |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| :-1,2-Dichloroethene        |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| -1,2-Dichloroethene         |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| ,2-Dichloropropane          |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| ,3-Dichloropropane          |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |
| 2,2-Dichloropropane         |                                   | ND                     | 1.0      |                 | 1.00             |                       |             |

RL: Reporting Limit.

DF: Dilution Factor. MDL: Method Detection Limit.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501



| Southern California Gas Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Dat      | te Received:   |             | 11/14/15       |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|-------------|----------------|--|
| M.L. 723B, P.O. Box 513249, Terminal Annex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Wo       |                | 15-11-1099  |                |  |
| Los Angeles, CA 90051-1249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |          | eparation:     |             | EPA 5030C      |  |
| 203 Angeles, OA 3000 191240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Me       |                | EPA 8260B   |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Uni      |                |             | ug/L           |  |
| Project: TS2015-C013 / Aliso Canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Oil      |                | Page 2 of 4 |                |  |
| Parameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Result   | RL             | DF          | Qualifiers     |  |
| 1,1-Dichleropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | 1.0            | 1.00        | <u>Gdamers</u> |  |
| The contract of the contract o |          |                |             |                |  |
| t-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 0.50           | 1.00        |                |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.0      | 1.0            | 1.00        |                |  |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | 10             | 1.00        |                |  |
| Isopropylbenzene San                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.8      | 1.0            | 1.00        |                |  |
| c-1,3-Dichloropropene t-1,3-Dichloropropene Ethylbenzene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,2,4-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.3      | 1.0            | 1.00        |                |  |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND       | 10             | 1.00        |                |  |
| 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Siz ND   | 10             | 1.00        |                |  |
| Naphthalene 40, 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CALO     | 10             | 1.00        |                |  |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 20 4W    | 1.0            | 1.00        |                |  |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND %     | 1.0            | 1.00        |                |  |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | NOTE TO  | 1.0            | 1.00        |                |  |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND CARO  | 1.0            | 1.00        |                |  |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND THE   | 0/- 10         | 1.00        |                |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 30       | 0/010          | 1.00        |                |  |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | 92 70          | 1.00        |                |  |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | 10 MO          | 1.00        |                |  |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 162 00         | 1.00        |                |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 10 0 0         | 1.00        |                |  |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 10             | 1.00        |                |  |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ND       | 1.0            | 00,1.00     |                |  |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | 10             | G)          |                |  |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | 5.0            | 1.00C       |                |  |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 50       | 1.0            | 1.00        |                |  |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 22       | 1.0            | 1.00        |                |  |
| Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND       | 10             | 1.00        |                |  |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND       | 0.50           | 1.00        |                |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 29       | 1.0            | 1.00        |                |  |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9.5      | 1.0            |             |                |  |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |                | 1,00        |                |  |
| Methyl-t-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND       | 1.0            | 1.00        |                |  |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Rec. (%) | Control Limits | Qualifiers  |                |  |
| 1,4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 102      | 80-120         |             |                |  |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 118      | 78-126         |             |                |  |
| 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 126      | 75-135         |             |                |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103      | 80-120         |             |                |  |

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

Ex. I-7, page 66 of 85



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

Date Received: Work Order: Preparation:

11/14/15 15-11-1099 **EPA 5030C** 

Method: Units:

**EPA 8260B** 

ug/L

Project: TS2015-C013 / Aliso Canyon

Page 3 of 4

| Client Sample Number        | Lab Sample<br>Number        | Date/Time<br>Collected | Matrix   | Instrument | Date<br>Prepared | Date/Time<br>Analyzed | QC Batch ID |
|-----------------------------|-----------------------------|------------------------|----------|------------|------------------|-----------------------|-------------|
| Method Blank                | Conno Section Season of the | N/A                    | Aqueous  | GC/MS XX   | 11/14/15         | 11/14/15<br>13:12     | 151114L001  |
| Parameter                   | 0                           | Result                 | RL       |            | DF               | Qua                   | alifiers    |
| Acetone                     | de Ope                      | ND                     | 20       |            | 1.00             |                       |             |
| Benzene                     | C 0 00                      | ND                     | 0.5      | 50         | 1.00             |                       |             |
| Bromobenzene                | ma con ma                   | ND                     | 1.0      | )          | 1.00             |                       |             |
| Bromochloromethane          | 13 10 4/30                  | ND                     | 1.0      | 1          | 1.00             |                       |             |
| Bromodichloromethane        | 90 50 B                     | ND                     | 1.0      | 1          | 1.00             |                       |             |
| Bromoform                   | 4 3 7                       | ND                     | 1.0      | 1          | 1.00             |                       |             |
| Bromomethane                | 10 May 1/2                  | CND                    | 10       |            | 1.00             |                       |             |
| 2-Butanone                  | 16                          | NDO                    | 10       |            | 1.00             |                       |             |
| n-Butylbenzene              |                             | NB O                   | 1.0      | 1          | 1.00             |                       |             |
| sec-Butylbenzene            |                             | NDC ,                  | 9 1.0    | 1          | 1.00             |                       |             |
| tert-Butylbenzene           |                             | ND Y                   | 0 1.0    | )          | 1.00             |                       |             |
| Carbon Disulfide            |                             | ND 3                   | Oc 40 10 |            | 1.00             |                       |             |
| Carbon Tetrachloride        |                             | ND                     | C 985    | 60         | 1.00             |                       |             |
| Chlorobenzene               |                             | ND                     | 96 19    | On         | 1.00             |                       |             |
| Chloroethane                |                             | ND                     | 86       | G.         | 1.00             |                       |             |
| Chloroform                  |                             | ND                     | 1.0      | none       | 1.00             |                       |             |
| Chloromethane               |                             | ND                     | 10       | 16 A       | 1.00             |                       |             |
| 2-Chlorotoluene             |                             | ND                     | 1.0      | (          | 1.00             |                       |             |
| 4-Chlorotoluene             |                             | ND                     | 1.0      | 1          | 91.00            |                       |             |
| Dibromochloromethane        |                             | ND                     | 1.0      | )          | 600              |                       |             |
| 1,2-Dibromo-3-Chloropropane |                             | ND                     | 5.0      | 1          | 1.00             |                       |             |
| 1,2-Dibromoethane           |                             | ND                     | 1.0      | )          | 1.00             |                       |             |
| Dibromomethane              |                             | ND                     | 1.0      | )          | 1.00             |                       |             |
| 1,2-Dichlorobenzene         |                             | ND                     | 1.0      | 1          | 1.00             |                       |             |
| 1,3-Dichlorobenzene         |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| 1,4-Dichlorobenzene         |                             | ND                     | 1.0      | 1          | 1.00             |                       |             |
| Dichlorodifluoromethane     |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| 1,1-Dichloroethane          |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| 1,2-Dichloroethane          |                             | ND                     | 0.5      |            | 1.00             |                       |             |
| 1,1-Dichlaroethene          |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| c-1,2-Dichloroethene        |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| -1,2-Dichloroethene         |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| 1,2-Dichloropropane         |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| 1,3-Dichloropropane         |                             | ND                     | 1.0      |            | 1.00             |                       |             |
| 2,2-Dichloropropane         |                             | ND                     | 1.0      |            | 1.00             |                       |             |

RL. Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501



| Southern California Gas Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dat      | te Received:   |                           | 11/14/15            |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----------------|---------------------------|---------------------|--|--|
| M.L. 723B, P.O. Box 513249, Terminal Annex                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Wo       | rk Order:      |                           | 15-11-1099          |  |  |
| Los Angeles, CA 90051-1249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | eparation:     |                           | EPA 5030C           |  |  |
| 203 Aligores, OA 3000 1-1243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          | Method:        |                           |                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Uni      |                |                           | EPA 8260B           |  |  |
| Project: TS2015-C013 / Aliso Canyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Uni      | ils.           |                           | ug/L<br>Page 4 of 4 |  |  |
| Floject. 132019-00137 Aliso Carlyon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |                |                           | Fage 4 01 4         |  |  |
| <u>Parameter</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Result   | RL             | DF                        | Qualifiers          |  |  |
| 1,1-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ND       | 1.0            | 1.00                      |                     |  |  |
| c-1,3-Dichloropropene t-1,3-Dichloropropene Ethylbenzene 2-Hexanone Isopropylbenzene p-Isopropyltoluene Methylene Chloride 4-Methyl-2-Pentanone Naphthalene n-Propylbenzene Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethene Toluene 1,2,3-Trichlorobenzene 1,1,1-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,1,2-Trichloroethane 1,2,3-Trichloroethane Trichlorofluoromethane 1,2,3-Trichloropropane 1,2,4-Trimethylbenzene | ND       | 0.50           | 1-00                      |                     |  |  |
| t-1,3-Dichloropropene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | 0.50           | 1.00                      |                     |  |  |
| Ethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ND       | 1.0            | 1.00                      |                     |  |  |
| 2-Hexanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 10             | 1.00                      |                     |  |  |
| Isopropylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ND       | 1.0            | 1.00                      |                     |  |  |
| p-Isopropyltoluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ND       | 1.0            | 1.00                      |                     |  |  |
| Methylene Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | YA ND    | 10             | 1.00                      |                     |  |  |
| 4-Methyl-2-Pentanone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Bix ND   | 10             | 1.00                      |                     |  |  |
| Naphthalene 40%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OND CND  | 10             | 1.00                      |                     |  |  |
| n-Propylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | O NO     | 1.0            | 1.00                      |                     |  |  |
| Styrene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NO Co    | 1.0            | 1.00                      |                     |  |  |
| 1,1,1,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND/n 15- | 1.0            | 1.00                      |                     |  |  |
| 1,1,2,2-Tetrachloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ND CHILD | 1.0            | 1.00                      |                     |  |  |
| Tetrachloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ND The   | Ob: 1.0        | 1.00                      |                     |  |  |
| Toluene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ND O     | 0 01.0         | 1.00                      |                     |  |  |
| 1,2,3-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | Ox 700_        | 1.00                      |                     |  |  |
| 1,2,4-Trichlorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | 0000           | 1.00                      |                     |  |  |
| 1,1,1-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | 1.0%           | 1,00                      |                     |  |  |
| 1,1,2-Trichloro-1,2,2-Trifluoroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | 10 9 9         | 1.00                      |                     |  |  |
| 1,1,2-Trichloroethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ND       | 1.0            | ), 1.00                   |                     |  |  |
| Trichloroethene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ND       | 1.0            | 00.1.00                   |                     |  |  |
| Trichlorofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | 10             | (G)6                      |                     |  |  |
| 1,2,3-Trichloropropane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | 5.0            | 1.000                     |                     |  |  |
| 1,2,4-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | 1.0            | 1.00                      |                     |  |  |
| 1,3,5-Trimethylbenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ND       | 1.0            | 1.00                      |                     |  |  |
| Vinyl Acetate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ND       | 10             | 1.00                      |                     |  |  |
| Vinyl Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ND       | 0.50           | 1.00                      |                     |  |  |
| p/m-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ND       | 1.0            | 1.00                      |                     |  |  |
| o-Xylene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ND       | 1.0            | 1,00                      |                     |  |  |
| Methyl-t-Butyl Ether (MTBE)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ND       | 1.0            | 1.00                      |                     |  |  |
| Surrogate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rec. (%) | Control Limits | Qualifiers                |                     |  |  |
| 1,4-Bromofluorobenzene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 97       | 80-120         | Manufaction of the second |                     |  |  |
| Dibromofluoromethane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 111      | 78-126         |                           |                     |  |  |
| 1,2-Dichloroethane-d4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118      | 75-135         |                           |                     |  |  |
| Toluene-d8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101      | 80-120         |                           |                     |  |  |

RL Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501



Southern California Gas Company

Date Received:

11/14/15

M.L. 723B, P.O. Box 513249, Terminal Annex

Work Order:

15-11-1099

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Page 1 of 1

| Client Sample Number |                  |         | Lab 5        | Sample Number |              | Date/Tir                | ne Collected                   | Matrix         |  |
|----------------------|------------------|---------|--------------|---------------|--------------|-------------------------|--------------------------------|----------------|--|
| Patriot 909          |                  |         | 15-11-1099-1 |               |              | 11/13/1                 | 19:40                          | Aqueous        |  |
| Parameter            | Results          | RL      | DF           | Qualifiers    | <u>Units</u> | Date<br>Prepared        | <u>Date</u><br><u>Analyzed</u> | Method         |  |
| Ignitability         | >212             | 70      | 1.00         |               | oF.          | N/A                     | 11/14/15                       | EPA 1010A      |  |
| pН                   | 7.59             | 0.01    | 1.00         | BV, BU        | pH units     | N/A                     | 11/14/15                       | SM 4500 H+ B   |  |
| Sulfide, Total       | ND O             | 0.050   | 1_00         |               | mg/L         | 11/14/15                | 11/14/15                       | SM 4500 S2 - D |  |
| Chloride             | 6100 0           | 100     | 50.0         |               | mg/L         | N/A                     | 11/14/15                       | SM 4500-CI C   |  |
| Cyanide, Total       | MONO             | 0.020   | 1.00         |               | mg/L         | 11/14/15                | 11/14/15                       | SM 4500-CN E   |  |
| Method Blank         | Polis            | 9/19/10 |              | 4.4           |              | N/A                     | 4 70                           | Aqueous        |  |
| Parameter            | Results          | Co RECO | 16 DF        | Qualifiers    | Units        | <u>Date</u><br>Prepared | Date<br>Analyzed               | Method         |  |
| Sulfide, Total       | ND               | 0.050   | 7.00         |               | mg/L         | 11/14/15                | 11/14/15                       | SM 4500 S2 - D |  |
| Chloride             | ND               | 2.0 7   | 6.000        |               | mg/L         | N/A                     | 11/14/15                       | SM 4500-CI C   |  |
| Cyanide, Total       | ND               | 0.020   | 1.080        | 200           | mg/L         | 11/14/15                | 11/14/15                       | SM 4500-CN E   |  |
|                      | Results ND ND ND |         |              | CHINES CO     | Sions of Ge  | neral Order             |                                |                |  |

RL: Reporting Limit. DF: Dilution Factor. MDL: Method Detection Limit.



### Quality Control - Spike/Spike Duplicate

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249 Date Received: Work Order: Preparation: Method: 11/14/15 15-11-1099 EPA 3010A Total EPA 6010B

Project: TS2015-C013 / Aliso Canyon

Page 1 of 2

| Quality Control Sample ID | Type            |                | Matrix      | In               | strument     | Date Prepared | Date Ana | lyzed | MS/MSD Bat | tch Numbe  |
|---------------------------|-----------------|----------------|-------------|------------------|--------------|---------------|----------|-------|------------|------------|
| Patriot 909               | Sample          |                | Aqueou      | s IC             | P 7300       | 11/14/15      | 11/14/15 | 15:34 | 151114SA1  |            |
| Patriot 909               | Matrix Spike    |                | Aqueou      | s IC             | P 7300       | 11/14/15      | 11/14/15 | 15:37 | 151114SA1  |            |
| Patriot 909               | Matrix Spike I  | Duplicate      | Aqueou      | s IC             | P 7300       | 11/14/15      | 11/14/15 | 15:43 | 151114SA1  |            |
| Parameter                 | Sample<br>Conc. | Spike<br>Added | MS<br>Conc. | MS<br>%Rec.      | MSD<br>Conc. | MSD<br>%Rec.  | %Rec. CL | RPD   | RPD CL     | Qualifiers |
| Antimony                  | OND The         | 0.5000         | 0.2473      | 49               | 0.2457       | 49            | 72-132   | 1     | 0-10       | 3          |
| Arsenic                   | 0.01929         | 0.5000         | 0.6014      | 118              | 0.6118       | 120           | 80-140   | 2     | 0-11       |            |
| Barium                    | 2,256           | 0.5000         | 2.893       | 4X               | 3.054        | 4X            | 87-123   | 4X    | 0-6        | Q          |
| Beryllium                 | ND92            | 0.5000         | 0.5453      | 109              | 0.5677       | 114           | 89-119   | 4     | 0-8        |            |
| Cadmium                   | 0.05572         | 0.5000         | 0.5323      | 95               | 0.5480       | 98            | 82-124   | 3     | 0-7        |            |
| Chromium                  | ND              | 0.5000         | 0,5422      | 108              | 0,5708       | 114           | 86-122   | 5     | 0-8        |            |
| Cobalt                    | 0.01920         |                | 0.5191      | 100              | 0.5351       | 103           | 83-125   | 3     | 0-7        |            |
| Соррег                    | 0.1176          | 0.5000         | 0.67420     | 111              | 0.7070       | 118           | 78-126   | 5     | 0-7        |            |
| Lead                      | ND              | 0.5000         | 0.4253      | 85               | 0,4394       | 88            | 84-120   | 3     | 0-7        |            |
| Molybdenum                | 0.05082         | 0.5000         | 0.5453      | 99<br>99<br>1045 | 0.5629       | 102           | 78-126   | 3     | 0-7        |            |
| Nickel                    | 0.1773          | 0.5000         | 0.6734      | 199 0            | 0.6974       | 104           | 84-120   | 3     | 0-7        |            |
| Selenium                  | ND              | 0.5000         | 0.5193      | 1045             | 0,0.5492     | 110           | 79-127   | 6     | 0-9        |            |
| Silver                    | 0.01846         | 0.2500         | 0.3288      | 124              | 0.3411       | 129           | 86-128   | 4     | 0-7        | 3          |
| Thallium                  | 0.03243         | 0.5000         | 0.2546      | 44               | 00.2788      | 49            | 79-121   | 9     | 8-0        | 3,4        |
| Vanadium                  | 0.2425          | 0.5000         | 0.8265      | 117              | 0.8762       | 0, 127        | 88-118   | 6     | 0-7        | 3          |
| Calcium                   | 3262            | 0.5000         | 3112        | 4X               | 31620        | 126 Order     | 77-113   | 4X    | 0-11       | Q          |
| Zinc                      | 0.9568          | 0.5000         | 1.561       | 121              | 1.595        | 128           | 89-131   | 2     | 0-8        |            |



### Quality Control - Spike/Spike Duplicate

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received: Work Order:

11/14/15 15-11-1099 EPA 7470A Total

Preparation: Method:

**EPA 7470A** 

Page 2 of 2

| Quality Control Sample ID | Туре                                                    | Matrix      | Instrument           | Date Prepared | Date Ana | lyzed | MS/MSD Bat | tch Number |
|---------------------------|---------------------------------------------------------|-------------|----------------------|---------------|----------|-------|------------|------------|
| 15-11-0525-14             | Sample                                                  | Aqueous     | Mercury 04           | 11/13/15      | 11/13/15 | 18:33 | 151113SA3  |            |
| 15-11-0525-14             | Matrix Spike                                            | Aqueous     | Mercury 04           | 11/13/15      | 11/13/15 | 18:35 | 151113SA3  |            |
| 15-11-0525-14             | Matrix Spike Duplicate                                  | Aqueous     | Mercury 04           | 11/13/15      | 11/13/15 | 18:38 | 151113SA3  |            |
| <u>Parameter</u>          | Sample Spike<br>Conc. Added                             | MS<br>Conc. | MS MSD<br>%Rec Conc. | MSD<br>%Rec.  | %Rec. CL | RPD   | RPD.GL     | Qualifiers |
| Mercury                   | Matrix Spike Duplicate  Sample Coric. Added  ND 0.01000 | 0.01030     | 103 0.01059          | 106           | 55-133   | 3     | 0-20       |            |
|                           | Alon Or                                                 | he Dubier   | ,                    |               |          |       |            |            |
|                           |                                                         | The Land    | Do Dio               |               |          |       |            |            |
|                           |                                                         |             | Code di or           |               |          |       |            |            |
|                           |                                                         |             | Ting                 | eneral O      |          |       |            |            |
|                           |                                                         |             |                      | Top           | 50       |       |            |            |
|                           |                                                         |             |                      |               | C        |       |            |            |
|                           |                                                         |             |                      |               |          |       |            |            |
|                           |                                                         |             |                      |               |          |       |            |            |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

**EPA 1010A** 

Page 1 of 4

Project: TS2015-C013 / Aliso Canyon

| Туре             | Matrix                   | Instrument                              | Date Prepared                                     | Date Analyzed                                             | Duplicate Batch Num                                                                                                                                                                                                                   | nber                                                                                                                                                                                  |
|------------------|--------------------------|-----------------------------------------|---------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sample           | Aqueous                  | FP3                                     | N/A                                               | 11/14/15 14:00                                            | F1114FPD1                                                                                                                                                                                                                             |                                                                                                                                                                                       |
| Sample Duplicate | Aqueous                  | FP3                                     | N/A                                               | 11/14/15 14:00                                            | F1114FPD1                                                                                                                                                                                                                             |                                                                                                                                                                                       |
| Complian Section | Sample Conc.<br>>212     | DUP Conc.<br>>212                       | RPD<br>0                                          | RPD CL<br>0-25                                            | Qualifiers                                                                                                                                                                                                                            | 8                                                                                                                                                                                     |
| Ce Audin         | of the Aunder Unite Line | the provision                           |                                                   |                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                       |
|                  |                          | ode during                              | General Order                                     | Ŷ.                                                        |                                                                                                                                                                                                                                       |                                                                                                                                                                                       |
|                  | Sample Sample Duplicate  | Sample Aqueous Sample Duplicate Aqueous | Sample Aqueous FP 3 Sample Duplicate Aqueous FP 3 | Sample Aqueous FP 3 N/A Sample Duplicate Aqueous FP 3 N/A | Sample         Aqueous         FP 3         N/A         11/14/15 14:00           Sample Duplicate         Aqueous         FP 3         N/A         11/14/15 14:00           Sample Cons.         DUP Cons.         RPD         RPD CL | Sample         Aqueous         FP 3         N/A         11/14/15 14:00 F1114FPD1           Sample Duplicate         Aqueous         FP 3         N/A         11/14/15 14:00 F1114FPD1 |



Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

SM 4500 H+ B

Page 2 of 4

| Quality Control Sample ID | Туре             | Matrix                | Instrument         | Date Prepared | Date Analyzed  | Duplicate Batch Number |
|---------------------------|------------------|-----------------------|--------------------|---------------|----------------|------------------------|
| Patriot 909               | Sample           | Aqueous               | PH 1               | N/A           | 11/14/15 10:44 | F1114PHD1              |
| Patriot 909               | Sample Duplicate | Aqueous               | PH 1               | N/A           | 11/14/15 10:44 | F1114PHD1              |
| Parameter<br>pH           | Combilance Audit | Sample Conc.<br>7.590 | DUP Conc.<br>7.640 | RPD<br>1      | RPD CL<br>0-25 | Qualifiers             |
|                           | Audi             | of the Duble U        | No.                |               |                |                        |
|                           |                  | 7                     | Hies Code Code     | <b>*</b>      |                |                        |
|                           |                  |                       | Grin               | eneral Order  |                |                        |
|                           |                  |                       |                    |               | g C            |                        |
|                           |                  |                       |                    |               |                |                        |



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Date Received: Work Order:

Preparation:

11/14/15

15-11-1099 N/A

Method:

SM 4500 S2 - D

Project: TS2015-C013 / Aliso Canyon

Page 3 of 4

| Quality Control Sample ID Patriot 909 | Type<br>Sample                   | Matrix<br>Aqueous  | Instrument<br>N/A |                                        | o:00 11/14/15 10:56              | Duplicate Batch Number<br>F1114SD1 |  |  |
|---------------------------------------|----------------------------------|--------------------|-------------------|----------------------------------------|----------------------------------|------------------------------------|--|--|
| Patriot 909                           | Sample Duplicate                 | Aqueous            | N/A               | 11/14/15 00:00 11/14/15 10:56 F1114SD1 |                                  |                                    |  |  |
| Parameter<br>Sulfide, Total           | Confoliation of the Confoliation | Sample Conc.<br>ND | DUP Conc.<br>ND   | RPD<br>N/A                             | RPD CL<br>0-25                   | Qualifiers                         |  |  |
|                                       | Compliance Audit                 | or the Dublic Ut   | the provision     |                                        |                                  |                                    |  |  |
|                                       |                                  |                    | Code dull         | General On                             | 70 <sub>7</sub> , 0 <sub>0</sub> |                                    |  |  |
|                                       |                                  |                    |                   |                                        | 800                              |                                    |  |  |



## Quality Control - Sample Duplicate

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

SM 4500-CIC

Page 4 of 4

| Quality Control Sample ID | Туре             | Matrix       | Instrument | Date Prepared | Date Analyzed  | Duplicate Batch Number |
|---------------------------|------------------|--------------|------------|---------------|----------------|------------------------|
| Patriot 909               | Sample           | Aqueous      | BUR02      | N/A           | 11/14/15 12:06 | F1114CLCD2             |
| Patriot 909               | Sample Duplicate | Aqueous      | BUR02      | N/A           | 11/14/15 12:06 | F1114CLCD2             |
| Parameter                 |                  | Sample Conc. | DUP Conc.  | RPD           | RPD CL         | Qualifiers             |
| Chloride                  | Compliance Audit | 6103         | 6103       | 0             | 0-25           |                        |
|                           | ance Audi        | Submitted U. |            |               |                |                        |
|                           |                  | Public       | No.        |               |                |                        |
|                           |                  | -41          | The Colons |               |                |                        |
|                           |                  |              | de durin   | Gener         |                |                        |
|                           |                  |              |            | al Order      | 2.             |                        |
|                           |                  |              |            |               | O,C            |                        |
|                           |                  |              |            |               |                |                        |



Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

SM 4500 S2 - D

Page 1 of 6

| Quality Control Sample ID | Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mat       | rix          | Instrument          | Date Pr       | epared D | Date Analyzed   | LCS/LCSD E | Batch Number |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|---------------------|---------------|----------|-----------------|------------|--------------|
| 099-15-853-671            | LCS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aqı       | ieous        | N/A                 | 11/14/1       | 5 1      | 11/14/15 10:56  | F1114SL1   |              |
| 099-15-853-671            | LCSD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Aqı       | ieous        | N/A                 | 11/14/1       | 5 1      | 1/14/15 10:56   | F1114SL1   |              |
| Parameter                 | Spike Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LCS Conc. | LCS<br>%Rec. | LCSD Conc.          | LCSD<br>%Rec. | %Rec.    | CL RPD          | RPD CL     | Qualifiers   |
| Sulfide, Total            | 1.000 pt de la section de la s | 0.8000    | 80           | 0,8000              | 80            | 80-120   | 0               | 0-20       |              |
|                           | Spike Added                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Oh The    | O Under      | the Provisions Code | Or            |          |                 |            |              |
|                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |              | 96/                 | ring energy   | Order    | Pa <sub>C</sub> |            |              |



Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received:

11/14/15

Work Order: Preparation: 15-11-1099 N/A

Method:

SM 4500-CN E

Page 2 of 6

| Type                  | Ma        | trix         | Instrument  | Date Fre         | epared                    | Date                      | Analyzed                        | LCS/LCSD B                                                                         | atch Number                                        |
|-----------------------|-----------|--------------|-------------|------------------|---------------------------|---------------------------|---------------------------------|------------------------------------------------------------------------------------|----------------------------------------------------|
| LCS                   | Aq        | ueous        | UV 8        | 11/14/15         | 5                         | 11/14                     | 1/15 12:18                      | F1114CNL2                                                                          |                                                    |
| LCSD                  | Aq        | ueous        | UV 8        | 11/14/15         | 5                         | 11/14                     | 1/15 12:18                      | F1114CNL2                                                                          |                                                    |
| Spike Added           | LCS Conc. | LCS<br>%Rec. | LCSD Conc.  | LCSD<br>%Rec.    | %Rec                      | CL                        | RPD                             | RPD CL                                                                             | Qualifiers                                         |
| 0.2000<br>Connolished | 0.1700    | 85           | 0.1760      | 88               | 80-12                     | 20                        | 3                               | 0-20                                                                               |                                                    |
|                       | Op OF The | Public Un    | the provi   |                  |                           |                           |                                 |                                                                                    |                                                    |
|                       |           |              | os Code du  | or Gener         |                           |                           |                                 |                                                                                    |                                                    |
|                       |           |              |             | ,                | Orde                      | 66                        |                                 |                                                                                    |                                                    |
|                       | LCS       | LCS Aq       | LCS Aqueous | LCS Aqueous UV 8 | LCS Aqueous UV 8 11/14/15 | LCS Aqueous UV 8 11/14/15 | LCS Aqueous UV 8 11/14/15 11/14 | LCS Aqueous UV 8 11/14/15 11/14/15 12:18 LCSD Aqueous UV 8 11/14/15 11/14/15 12:18 | LCS Aqueous UV 8 11/14/15 11/14/15 12:18 F1114CNL2 |



Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Project: TS2015-C013 / Aliso Canyon

Date Received:

11/14/15 15-11-1099

Work Order: Preparation:

EPA 3510C

Method:

EPA 8015B (M)

Page 3 of 6

| Quality Control Sample ID | Type                          | Mat                | rix          | Instrument   | Date Fr       | epared | Date  | Analyzed   | LCS/LCSD B | atch Number |
|---------------------------|-------------------------------|--------------------|--------------|--------------|---------------|--------|-------|------------|------------|-------------|
| 099-15-498-310            | LCS                           | Aqı                | ieous        | GC 47        | 11/14/1       | 5      | 11/14 | 1/15 14:21 | 151114B01  |             |
| 099-15-498-310            | LCSD                          | Aqı                | ueous        | GC 47        | 11/14/1       | 5      | 11/14 | 1/15 14:40 | 151114B01  |             |
| Parameter                 | Spike Added                   | LCS Conc.          | LCS<br>%Rec. | LCSD Conc.   | LCSD<br>%Rec. | %Red   | o. CL | RPD        | RPD CL     | Qualifiers  |
| TPH as Diesel             | 2000 Onlident                 | 1822<br>Nal, Subba | 91           | 1962         | 98            | 75-11  | 7     | 7          | 0-13       |             |
|                           | **                            | Ton Ortho          | O Under      | the province |               |        |       |            |            |             |
|                           |                               |                    |              | Code du      | or General    | 210    |       |            |            |             |
|                           |                               |                    |              |              |               | Too    | 60.   | 0          |            |             |
|                           | Spike Added  2000 Spike Added |                    |              | 96/          | Ting energy   | Orde   | 100   | C.         |            |             |



## **Quality Control - LCS**

Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex

Los Angeles, CA 90051-1249

Total number of ME compounds; 0 Total number of ME compounds allowed: 1 LCS ME CL validation result: Pass

Date Received: Work Order:

15-11-1099

Preparation:

EPA 3010A Total **EPA 6010B** 

11/14/15

Method:

| Quality Control Sample ID | Туре     | Matri                                | x       | Instrument | Date Prep                                                                      | ared Date Ana | lyzed LCS Batch N | lumber     |
|---------------------------|----------|--------------------------------------|---------|------------|--------------------------------------------------------------------------------|---------------|-------------------|------------|
| 97-01-003-15490           | LCS      | Aque                                 | eous    | ICP 7300   | 11/14/15                                                                       | 11/14/15      | 15:28 151114LA1   |            |
| Parameter Parameter       |          | Spike Added                          | Conc.   | Recovered  | LCS %Rec.                                                                      | %Rec. CL      | ME CL             | Qualifiers |
| Antimony                  |          | 0.5000                               | 0.493   | 4          | 99                                                                             | 80-120        | 73-127            |            |
| rsenic                    | -        | 0.5000                               | 0.491   | 5          | 98                                                                             | 80-120        | 73-127            |            |
| Barium                    | 200      | 0.5000                               | 0.5183  | 3          | 104                                                                            | 80-120        | 73-127            |            |
| Seryllium                 | Chang.   | 0.5000<br>0.5000<br>0.5000<br>0.5000 | 0.496   | 0          | 99                                                                             | 80-120        | 73-127            |            |
| Cadmium                   | Complian | 0.5000                               | 0.504   | 3          | 101                                                                            | 80-120        | 73-127            |            |
| chromium                  | 10/1     | 0.9000                               | 0.511   | 2          | 102                                                                            | 80-120        | 73-127            |            |
| obalt                     | 97       | 0.5000                               | 0.530   | 0          | 106                                                                            | 80-120        | 73-127            |            |
| copper                    |          | 0.5000                               | 0.496   | 4          | 99                                                                             | 80-120        | 73-127            |            |
| ead                       |          | 0.5000                               | 0.503   | 6          | 101                                                                            | 80-120        | 73-127            |            |
| lolybdenum                |          | 0.5000                               | 4,0.486 | 2          | 97                                                                             | 80-120        | 73-127            |            |
| lickel                    |          | 0.5000                               | 0.517   | 7          | 104                                                                            | 80-120        | 73-127            |            |
| selenium                  |          | 0.5000                               | 0.481   | 6          | 96                                                                             | 80-120        | 73-127            |            |
| lilver                    |          | 0.2500                               | 0.251   | 0          | 101<br>107<br>101<br>98<br>98<br>101<br>101<br>101<br>101<br>101<br>101<br>101 | 80-120        | 73-127            |            |
| hallium                   |          | 0.5000                               | 0.535   | 8/00/      | 107                                                                            | 80-120        | 73-127            |            |
| anadium/                  |          | 0.5000                               | 0.5029  | 0 0 0      | 101                                                                            | 80-120        | 73-127            |            |
| Calcium                   |          | 0.5000                               | 0.492   | 9 00       | 99                                                                             | 80-120        | 73-127            |            |
| Zinc                      |          | 0.5000                               | 0.492   | 3          | 98                                                                             | 80-120        | 73-127            |            |



## Quality Control - LCS

Southern California Gas Company
M.L. 723B, P.O. Box 513249, Terminal Annex

Project: TS2015-C013 / Aliso Canyon

Los Angeles, CA 90051-1249

Date Received:

11/14/15 15-11-1099

Work Order: Preparation:

EPA 7470A Total

Method:

EPA 7470A

Page 5 of 6

| Quality Control Sample ID | Type | Matrix      | Instrument  | Date | e Frepared | Date Ana | llyzed | LCS Batch | Number     |
|---------------------------|------|-------------|-------------|------|------------|----------|--------|-----------|------------|
| 099-04-008-7657           | LCS  | Aqueous     | Mercury 04  | 11/  | 13/15      | 11/13/15 | 18:31  | 151113LA3 |            |
| Parameter                 |      | Spike Added | Conc. Recov | ered | LCS %Re    | ec.      | %Rec.  | CL        | Qualifiers |
| Mercury                   |      | 0.01000     | 0.01065     |      | 107        |          | 80-120 | 3         |            |

Compliance stage of the Duble United Code of General Order of Code of



Southern California Gas Company M.L. 723B, P.O. Box 513249, Terminal Annex Los Angeles, CA 90051-1249

Date Received: Work Order: Preparation: Method:

11/14/15 15-11-1099 **EPA 5030C EPA 8260B** 

Project: TS2015-C013 / Aliso Canyon

Page 6 of 6

| Quality Control Sample ID       | Туре           |           | Matrix       | Ins           | trument       | Date Prepare               | d Date A | nalyzed  | LCS/LCSD Ba | lch Number |
|---------------------------------|----------------|-----------|--------------|---------------|---------------|----------------------------|----------|----------|-------------|------------|
| 099-14-001-18768                | LCS            |           | Aqueous      | GC            | /MS XX        | 11/14/15                   | 11/14/   | 15 10:55 | 151114L001  |            |
| 099-14-001-18768                | LCSD           |           | Aqueous      | GC            | /MS XX        | 11/14/15                   | 11/14/   | 15 11:29 | 151114L001  |            |
| <u>Parameter</u>                | Spike<br>Added | LCS Conc. | LCS<br>%Rec. | LCSD<br>Conc. | LCSD<br>%Rec. | %Rec. CL                   | ME CL    | RPD      | RPD CL      | Qualifiers |
| Benzene                         | 50.00 C        | 48.94     | 98           | 48.85         | 98            | 80-120                     | 73-127   | 0        | 0-20        |            |
| Carbon Tetrachloride            | 50.00          | 55.76     | 112          | 55.28         | 111           | 67-139                     | 55-151   | 1        | 0-20        |            |
| Chlorobenzene                   | 50.00          | 47.74     | 95           | 48.38         | 97            | 78-120                     | 71-127   | 1        | 0-20        |            |
| 1,2-Dibromoethane               | 50.00          | C48.42    | 97           | 49.04         | 98            | 80-120                     | 73-127   | 1        | 0-20        |            |
| 1,2-Dichlorobenzene             | 50.00          | 45:63 U   | 91           | 46.06         | 92            | 63-129                     | 52-140   | 1        | 0-20        |            |
| 1,2-Dichloroethane              | 50.00          | C56.07    | 112          | 55.89         | 112           | 70-130                     | 60-140   | 0        | 0-20        |            |
| 1,1-Dichloroethene              | 50.00          | 5408, 0   | 108          | 54.22         | 108           | 66-126                     | 56-136   | 0        | 0-20        |            |
| Ethylbenzene                    | 50.00          | 48.53     | 97 9         | 48,58         | 97            | 80-123                     | 73-130   | 0        | 0-20        |            |
| Toluene                         | 50.00          | 49.39     | 990          | 249.42        | 99            | 80-120                     | 73-127   | 0        | 0-20        |            |
| Trichloroethene                 | 50.00          | 48.26     | 97 46/       | 47.68         | 95            | 80-122                     | 73-129   | 1        | 0-20        |            |
| Vinyl Chloride                  | 50.00          | 35.70     | 71           | 37,60         | 75            | 70-130                     | 60-140   | 5        | 0-20        |            |
| p/m-Xylene                      | 100.0          | 96.63     | 97           | 97.65         | o, 98         | 75-123                     | 67-131   | 1        | 0-20        |            |
| o-Xylene                        | 50.00          | 47.12     | 94           | 47.50°S       | 95            | 74-122                     | 66-130   | 1        | 0-20        |            |
| Methyl-t-Butyl Ether (MTBE)     | 50.00          | 44.89     | 90           | 45.85         | 0,9275        | 69-129                     | 59-139   | 2        | 0-20        |            |
| Total number of LCS compounds   | s: 14          |           |              |               | 940           | 75-123<br>74-122<br>69-129 |          |          |             |            |
| Total number of ME compounds:   | 0              |           |              |               | 1             | 0 0                        |          |          |             |            |
| Total number of ME compounds    | allowed: 1     |           |              |               |               | 9/0                        |          |          |             |            |
| CS ME CL validation result: Pas | SS             |           |              |               |               | 7                          | 70       |          |             |            |
|                                 |                |           |              |               |               |                            | 60       |          |             |            |
|                                 |                |           |              |               |               |                            | 0,0      |          |             |            |
|                                 |                |           |              |               |               |                            |          |          |             |            |



## Sample Analysis Summary Report

| Method         Extraction         Chemist ID         Instrument         Analytical Location           EPA 1010A         N/A         691         FP 3         1           EPA 2010B         EPA 3010A Total         935         ICP 7300         1           EPA 7470A         EPA 7470A Total         935         ICP 7300         1           EPA 8016B (M)         EPA 5030C         985         GC/MS XX         2           EPA 8260B         N/A         688         PH 1         1           SM 4500 FT B         N/A         688         BURD2         1           SM 4500 CT C         N/A         688         BURD2         1           SM 4500 CN E         N/A         880         UV 8         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Method       |                  |            |            |                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|------------------|------------|------------|---------------------|
| EPA 6010B         EPA 3010A Total         935         ICP 7300         1           EPA 7470A         EPA 7470A Total         915         Mercury 04         1           EPA 8015B (M)         EPA 3510C         421         GC 47         1           EPA 8260B         EPA 5030C         986         GC/MS XX         2           SM 4500 H+ B         N/A         688         PH 1         1           SM 4500 S2 - D         N/A         880         N/A         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ncurou       | Extraction       | Chemist ID | Instrument | Analytical Location |
| EPA 7470A       EPA 7470A Total       915       Mercury 04       1         EPA 8015B (M)       EPA 3510C       421       GC 47       1         EPA 8260B       EPA 5030C       986       GC/MS XX       2         SM 4500 H+ B       N/A       688       PH 1       1         SM 4500 S2 - D       N/A       880       N/A       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PA 1010A     | N/A              | 691        | FP3        | 1                   |
| EPA 8015B (M)     EPA 3510C     421     GC 47     1       EPA 8260B     EPA 5030C     986     GC/MS XX     2       SM 4500 H+ B     N/A     68B     PH 1     1       SM 4500 S2 - D     N/A     880     N/A     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | EPA 6010B    | EPA 3010A Total  | 935        | JCP 7300   | 1                   |
| EPA 8260B     EPA 5030C     986     GC/MS XX     2       SM 4500 H+ B     N/A     688     PH 1     1       SM 4500 S2 - D     N/A     880     N/A     1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EPA 7470A    | EPA 7470A Total  | 915        | Mercury 04 | 1                   |
| SM 4500 H+ B N/A 688 PH 1 1<br>SM 4500 S2 - D N/A 880 N/A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA 8015B (M) | EPA 3510C        | 421        | GC 47      | 1                   |
| SM 4500 H+ B N/A 688 PH 1 1<br>SM 4500 S2 - D N/A 880 N/A 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PA 8260B     | EPA 5030C        | 986        | GC/MS XX   | 2                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SM 4500 H+ B | N/A              | 688        | PH 1       | 1                   |
| SM 4500-CI C N/A 688 BUR02 1 SM 4500-CN E N/A 880 UV 8 1  Combined to 1 South |              |                  |            |            | 1                   |
| SM 4500-CN E N/A 880 UV 8 1  Conno Section Sec | SM 4500-CI C | N/A              | 688        | BUR02      | 1                   |
| Compliance Audit of the Subjective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SM 4500-CN E | n/A              | 880        | UV8        | 1                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | Cop of the Bushe | the .      |            |                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |                  | Code To    |            |                     |
| Code sor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |                  | Turino     | Sonor      |                     |
| Code during Cener                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |                  |            | 9/0,       |                     |

Location 1: 7440 Lincoln Way, Garden Grove, CA 92841 Location 2: 7445 Lampson Avenue, Garden Grove, CA 92841



## Glossary of Terms and Qualifiers

| ork Order  | :15-11-1099 Page 1 of 1                                                                                                                                                                                                                                                                                                                                                             |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Qualifiers | Definition                                                                                                                                                                                                                                                                                                                                                                          |
| *          | See applicable analysis comment                                                                                                                                                                                                                                                                                                                                                     |
| <          | Less than the indicated value.                                                                                                                                                                                                                                                                                                                                                      |
| >          | Greater than the indicated value                                                                                                                                                                                                                                                                                                                                                    |
| 1          | Surrogate compound recovery was out of control due to a required sample dilution. Therefore, the sample data was reported without furth clarification.                                                                                                                                                                                                                              |
| 2          | Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.                                                                                                                                                          |
| 3          | Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to suspected matrix interference. T associated LCS recovery was in control.                                                                                                                                                                                                       |
| 4          | The MS/MSD RPD was out of control due to suspected matrix interference                                                                                                                                                                                                                                                                                                              |
| 5          | The PDS/PDSD or PES/PBSD associated with this batch of samples was out of control due to suspected matrix interference.                                                                                                                                                                                                                                                             |
| 6          | Surrogate recovery/below the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| 7          | Surrogate recovery above the acceptance limit.                                                                                                                                                                                                                                                                                                                                      |
| В          | Analyle was present in the associated method blank.                                                                                                                                                                                                                                                                                                                                 |
| BU         | Sample analyzed after holding time expired                                                                                                                                                                                                                                                                                                                                          |
| BV         | Sample received after holding time expired.                                                                                                                                                                                                                                                                                                                                         |
| C)         | See case narrative.                                                                                                                                                                                                                                                                                                                                                                 |
| E          | Concentration exceeds the calibration range. 8 4                                                                                                                                                                                                                                                                                                                                    |
| ET         | Sample was extracted past end of recommended max. holding time.                                                                                                                                                                                                                                                                                                                     |
| HD         | The chromatographic pattern was inconsistent with the profile of the reference fuel standard.                                                                                                                                                                                                                                                                                       |
| HDH        | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but heavier hydrocarbons were also present (or detected).                                                                                                                                                                                                                  |
| HDL        | The sample chromatographic pattern for TPH matches the chromatographic pattern of the specified standard but lighter hydrocarbons we also present (or detected).                                                                                                                                                                                                                    |
| 7          | Analyle was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.                                                                                                                                                                                                                                     |
| AL         | Analyle positively identified but quantitation is an estimate.                                                                                                                                                                                                                                                                                                                      |
| ME         | LCS Recovery Percentage is within Marginal Exceedance (ME) Control Limit range (*A SD from the mean).                                                                                                                                                                                                                                                                               |
| ND         | Parameter not detected at the indicated reporting limit.                                                                                                                                                                                                                                                                                                                            |
| a          | Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.                                                                                                                                                                                                       |
| SG         | The sample extract was subjected to Silica Gel treatment prior to analysis.                                                                                                                                                                                                                                                                                                         |
| X          | % Recovery and/or RPD out-of-range.                                                                                                                                                                                                                                                                                                                                                 |
| Z          | Analyle presence was not confirmed by second column or GC/MS analysis.                                                                                                                                                                                                                                                                                                              |
|            | Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture. All QC results are reported on a wet weight basis.                                                                                                                                                                                                           |
|            | Any parameter identified in 40CFR Part 136.3 Table II that is designated as "analyze immediately" with a holding time of <= 15 minutes (40CFR-136.3 Table II, footnote 4), is considered a "field" test and the reported results will be qualified as being received outside of the stated holding time unless received at the laboratory within 15 minutes of the collection time. |
|            | A calculated total result (Example: Total Pesticides) is the summation of each component concentration and/or, if "J" flags are reported, estimated concentration. Component concentrations showing not detected (ND) are summed into the calculated total result as zero concentrations.                                                                                           |
|            |                                                                                                                                                                                                                                                                                                                                                                                     |

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL: (714) 895-5494 • FAX: (714) 894-7501

# CHAIN OF CUSTODY FORM

## 15-11-1099

# SOUTHERN CALIFORNIA GAS COMPANY - ENGINEERING ANALYSIS CENTER

SHIPPING ADDRESS - 8730 E. SLAUSON AVE. ML SC723B, PICO RIVERA, CA 90660-5100 - PHONE: (562)-806-4344 STREET ADDRESS - 8101 ROSEMEAD BLVD. BLDG H, PICO RIVERA, CA 90660 - EMAIL: EACChemicalSection@Socalgas.com

| te Time By Collected Sample Sample Preservative  Time By 12 755 mt Lygen Container  15 02:40 PM 5. Julba 17 11 11 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Project # 420   5-6013 | 6013             | Requestor        | The gen         |                    | Sampling L                              | Sampling Location Asim Compan | n Compon                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|------------------|-----------------|--------------------|-----------------------------------------|-------------------------------|----------------------------------------|
| 1/12/16 02:40 PM 5.90-80 1-1967 12 12 12 12 12 12 12 12 12 12 12 12 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Sample I.D.            | Sampling<br>Date | Sampling<br>Time | Collected<br>By |                    | Sample                                  | Preservative                  |                                        |
| 1400 1 1005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/2005 1/20 | Pabrial 9001           | 9/4/1            | 07:40 PM         |                 | waste x1           | 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | Na CA                         | pt, Plushpoint, Chloride.<br>Cyncolode |
| Strong Land House                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                      |                  | _                |                 | 1, 5002 1/2 1200 X | The d                                   | 1,400,                        | TPH-CL<br>TT 22 MANS & POTESIUM        |
| Geneta orde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ->                     |                  | ~                | Qurin           | to first           |                                         | Enthalfoot<br>14C1            | Sulfine<br>Subo. usc                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | `                      | `                | N                | General Orde    | · ·                | \                                       | 1                             | Ĺ                                      |

| telinquished By |             | Company/     | Date     | Time    | Received By         | Company/        |
|-----------------|-------------|--------------|----------|---------|---------------------|-----------------|
| Print) //       | (Signature) | GasCo. Dept. |          |         | (Print) (Signature) | e) GasCo. Dept. |
| Som Malter      | SAM DASTON  | FAC          | 11/13/15 | 8:00 PM | Mort Kommonor       | the three conc  |
| ast Kummere     | 5 But Chi   | こなり          | 11/11    | 0480    | 2 - Yau Lieu        | 6.4             |
|                 |             |              |          |         |                     |                 |
|                 |             |              |          |         |                     |                 |

H:\Chem\Forms\Chain of Custody.xls

Calscience

Page 29 of 29 WORK ORDER NUMBER: 15-11- /099

## SAMPLE RECEIPT O

| 112100 200 2001 | W-11 W - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |
|-----------------|------------------------------------------|
| HECKLIST        | COOLER _ / OF _ /                        |
|                 | DATE: 11 / /4 / 2015                     |

| CLIENT:                      | Gas Co.                                                                                                                      |                                                                                                                                               |                                                                  | DA                         | TE: 11             | 1 14                          | / 201      |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|----------------------------|--------------------|-------------------------------|------------|
| Thermomet ☐ Samp ☐ Samp      | er ID: SC2 (CF:-0.4°C); Te<br>le(s) outside temperature (<br>le(s) outside temperature (                                     | 0°C, not frozen except sedin<br>emperature (w/o CF):                                                                                          | 9°C (w/ CF):<br>by;)<br>nilled on same day c                     |                            | ] Blank            | <b>Ø</b> Samp                 | ole        |
|                              | s) received at ambient tem<br>mperature:   Air   Filter                                                                      | perature; placed on ice for tra                                                                                                               | ansport by courier                                               |                            | Check              | ed by: _                      | 802        |
| CUSTODY                      | SEAL:                                                                                                                        |                                                                                                                                               | 3                                                                |                            |                    |                               | 3,0        |
| Cooler<br>Sample(s)          | ☐ Present and Injact ☐ Present and Injact                                                                                    | ☐ Present but Not Intact☐ Present but Not Intact☐                                                                                             | Not Present Not Present                                          | □ N/A                      |                    | ked by: _<br>ked by: _        | 800        |
| SAMPLE C                     | ONDITION: "TO, CO                                                                                                            | Ma                                                                                                                                            |                                                                  |                            | Yes                | No                            | N/A        |
| Chain-of-Cu                  | ustody (COC) document(s                                                                                                      | received with samples                                                                                                                         | *************                                                    |                            | . 0                |                               |            |
| □ Samp                       | nent(s) received complete                                                                                                    | e 77 Matrix 171 Number of o                                                                                                                   | ontainers                                                        |                            | . Jar              |                               |            |
| Sampler's n                  | name indicated on COC                                                                                                        | 10/6/14                                                                                                                                       |                                                                  | *****                      | . 1                |                               |            |
| Sample con                   | ntainer label(s) consistent v                                                                                                | vith COC                                                                                                                                      | **   *     *                                                     |                            | . 8                |                               |            |
| Sample con                   | ntainer(s) intact and in good                                                                                                | d condition                                                                                                                                   | (                                                                | ***********                | d                  |                               |            |
| Proper cont                  | ainers for analyses reques                                                                                                   | ted                                                                                                                                           | 200                                                              |                            | Ø                  |                               |            |
| Sufficient vo                | olume/mass for analyses re                                                                                                   | equested                                                                                                                                      | 6 Or                                                             |                            |                    |                               |            |
| Aqueous                      | s samples for certain analy                                                                                                  | elinquished I No relinquish  vith COC  d condition  sted  equested  ses received within 15-minut                                              | e notaing time                                                   |                            |                    |                               |            |
| ₽ pH □                       | Residual Chlorine Di                                                                                                         | ssolved Sulfide                                                                                                                               | d Oxygen                                                         | Ś                          | 🏻                  | P                             |            |
| Unprese                      |                                                                                                                              | eceived for certain analyses                                                                                                                  | tainer : : : : : : : : : : : : : : : :                           | e C                        | മ                  |                               |            |
| Container(s  Volati          | s) for certain analysis free of<br>le Organics       Dissolved                                                               | of headspace<br>Gases (RSK-175) □ Dissol<br>Ferrous Iron (SM 3500) □ F                                                                        | ved Oxygen (SM 45                                                | 500)                       | 8                  |                               |            |
| Tedlar™ ba                   | ig(s) free of condensation                                                                                                   | *********************                                                                                                                         |                                                                  | *** *** *** ***            | 🗆                  |                               | A          |
| CONTAINE                     | R TYPE: ,                                                                                                                    |                                                                                                                                               | (Trip Blan                                                       | k Lot Numb                 | er:                |                               | 9          |
| Aqueous: □<br>125PBzn 1500PB | □ VOA                                                                                                                        | a <sub>2</sub>                                                                                                                                | 125AGB □ 125A<br>2250PBn □ 500AG                                 | GBh □ 125/<br>GB Æ 500AG   | AGBp □<br>SJ □ 500 | AGJs                          |            |
| Air: 🗆 Tedla                 | ar™ □ Canister □ Sorber                                                                                                      | nt Tube PUF D                                                                                                                                 | Other Matrix (                                                   | ): 1                       | J                  | _ п_                          |            |
| Container: A<br>Preservative | = Amber, B = Bottle, C = Cle<br>: b = buffered, f = filtered, h =<br>s = H <sub>2</sub> SO <sub>4</sub> , u = ultra-pure, zo | ar, E = Envelope, G = Glass, J<br>HCl. n = HNO <sub>3</sub> , na = NaOH, na<br>nna = Zn(CH <sub>3</sub> CO <sub>2</sub> ) <sub>2</sub> + NaOH | = Jar, $P$ = Plastic, and<br>$a_2$ = $Na_2S_2O_3$ , $p$ = $H_3P$ | Z = Ziploc/Re<br>O₄, Label | ed/Check           | Bag<br>ked by: _<br>ved by: _ | 050<br>228 |

2015-04-10 Revision

## Ex. I-8

## **Daily Well Work Report**



|                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                  | Gas<br>Company                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Field                                                                                                                                                                              | Name                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                        | Operator                                                                                         |                                                                                                                            |
| Aliso Canyon                                                                                                                                                                       | So                                                                                                                                                                                                                                                                                       | uthern California Gas Company                                                                                                                                                                          |                                                                                                  |                                                                                                                            |
| Daily Summary<br>Job Name                                                                                                                                                          |                                                                                                                                                                                                                                                                                          | Report Sta                                                                                                                                                                                             | art Date                                                                                         | Report End Date                                                                                                            |
| Oct 2015 - Wellhead Leak                                                                                                                                                           | Laurence contraction                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                        | 11/13/2015                                                                                       | 11/14/2015                                                                                                                 |
| Daily Field Est Total (Cost)                                                                                                                                                       | Cum Field Est To Date (Cost)                                                                                                                                                                                                                                                             | Total AFE Amount (Cost)                                                                                                                                                                                | Norm                                                                                             | nalized AFE-Field Estimate (Cost)                                                                                          |
| Equalized swab valve w/ 1200 psi<br>Perforated tubing 8387'-8391'. PO<br>open choke on 7" casing. Pump ra<br>After 185 bbls pumped, pony moto<br>surface cracks. Displaced 10 bbls | g kill. Installed target 90 on wellhead flot. Opened swab valve. Tubing Pressure OH. L/D lubricator. Pumped 10 bbls 9.4 ate at 6 bpm. After 80 bbls displaced, ot or went down. Pumps offline. Brought pt. of 9.4 ppg polymer into tubing. Shut dowks. Continue pumping junk shots. Shut | <ul> <li>- 1201 psi. Pumped 6 bbls CaCl2<br/>polymer pill. Began displacing w<br/>served increased gas flow and li<br/>umps back online at 7 bpm. After<br/>wn. Lined up to pump down 2-7/8</li> </ul> | 2. RIH w/ tubing pund<br>1/ 9.4 ppg CaCl2. After<br>quid at surface crack<br>693 bbls pumpd, bri | ch. Tagged EZSV at 8402'.<br>er displacing tubing volumed,<br>ks. Continued pumping 8 bpm.<br>ne, oil and gas flowing from |
| Job Phase                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          | Pfani                                                                                                                                                                                                  | ned Likely Phase Cost (                                                                          | Actual Phase Field E Cost Var ML (Cost)                                                                                    |
| D-III Ot-                                                                                                                                                                          |                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                        |                                                                                                  |                                                                                                                            |
| Daily Costs  Cost Des                                                                                                                                                              | Ve                                                                                                                                                                                                                                                                                       | endor Ticket                                                                                                                                                                                           | Field Est (Cos                                                                                   | t) Note                                                                                                                    |
| Labor - Contract                                                                                                                                                                   | G.M. Volkmar                                                                                                                                                                                                                                                                             | 23-2015                                                                                                                                                                                                | Tiod Lat (Cos                                                                                    | M ke Volkmar Supervision                                                                                                   |
| Labor - Contract                                                                                                                                                                   | Halliburton Energy Se                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                        | 08                                                                                               | Boots & Coots Estimate                                                                                                     |
| Pumping Services                                                                                                                                                                   | Halliburton Energy So                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                        |                                                                                                  | Pump Truck, crew,<br>supervisor, standby, pump<br>truck                                                                    |
| Labor - Contract                                                                                                                                                                   | Carbon Wireline                                                                                                                                                                                                                                                                          | 0516                                                                                                                                                                                                   |                                                                                                  | Onyx piping, separator and crew labor. Equipment and standby                                                               |
| Wireline - Production Equip.                                                                                                                                                       | Western Wireline                                                                                                                                                                                                                                                                         | 13028                                                                                                                                                                                                  |                                                                                                  | Quad monitors, service charge, substance charge. Millingworth, PGear, C Bottoms                                            |
| Labor - Contract                                                                                                                                                                   | Doby Hagar Trucking                                                                                                                                                                                                                                                                      | est                                                                                                                                                                                                    |                                                                                                  | Supervisor on site                                                                                                         |
| Crane Services                                                                                                                                                                     | Doby Hagar Trucking                                                                                                                                                                                                                                                                      | 127318                                                                                                                                                                                                 |                                                                                                  | Stinger.                                                                                                                   |
| Welding Services                                                                                                                                                                   | Hurst Welding                                                                                                                                                                                                                                                                            | 691431                                                                                                                                                                                                 |                                                                                                  | Welding Services                                                                                                           |
| Labor - Contract                                                                                                                                                                   | Ensign Resources                                                                                                                                                                                                                                                                         | 3102664-<br>SO18                                                                                                                                                                                       |                                                                                                  | Ensign crew and supervisor                                                                                                 |
| Trucking - Vacuum                                                                                                                                                                  | Doby Hagar Trucking                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                  | 80 bbl vac truck, labor<br>(victor)                                                                                        |
| Trucking - Vacuum                                                                                                                                                                  | Doby Hagar Trucking                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                        |                                                                                                  | 130 bbl vac truck, labor<br>(Robert/Andy)                                                                                  |
| Wireline - Production Equip.                                                                                                                                                       | Western Wireline                                                                                                                                                                                                                                                                         | 12647                                                                                                                                                                                                  |                                                                                                  | Supervisor Curis Partain,<br>James Bottoms, mileage,<br>Mast trailer stand by, 2-9/16"<br>Flange                           |
| Trucking - Vacuum                                                                                                                                                                  | Doby Hagar Trucking                                                                                                                                                                                                                                                                      | 23327                                                                                                                                                                                                  |                                                                                                  | 130 bbl vac truck, labor (steve b)                                                                                         |
| Labor - Contract                                                                                                                                                                   | Geo Drilling Fluids In                                                                                                                                                                                                                                                                   | c. 117057                                                                                                                                                                                              |                                                                                                  | Labor - Ryan Lindsey                                                                                                       |
| Rentals - Misc                                                                                                                                                                     | Pacific Petroleum                                                                                                                                                                                                                                                                        | 185457                                                                                                                                                                                                 |                                                                                                  | Couple equipment and truck to bakersfield to load                                                                          |
| Trucking - Vacuum                                                                                                                                                                  | Pacific Petroleum                                                                                                                                                                                                                                                                        | 184783                                                                                                                                                                                                 |                                                                                                  | Haul cc water from GEO to<br>Socal Gas. Load 1 load brine<br>from SS25 to 69 pad. Used<br>2x80 bbl vac trucks              |
| Coiled tubing                                                                                                                                                                      | Halliburton Energy So                                                                                                                                                                                                                                                                    | ervices 09028763                                                                                                                                                                                       | 399                                                                                              | CT 1-1/2" Class I Div II Unit,<br>6 man crew/lodge, CT Zone<br>II charge, CT Add Hose<br>Package,                          |
| Rentals - Misc                                                                                                                                                                     | PEB (Padilla Electric                                                                                                                                                                                                                                                                    | Builders) 15-4960                                                                                                                                                                                      |                                                                                                  | SS4/SS7 generators and trailers                                                                                            |
| Trucking - Vacuum                                                                                                                                                                  | Doby Hagar Trucking                                                                                                                                                                                                                                                                      | 127255                                                                                                                                                                                                 |                                                                                                  | Load 1330 bbl CC water and haul to SS-9 site and unload into JJ-8. Mix fresh water into JJ-8                               |

Ex. I-8, page 1 of 2

## Daily Well Work Report



| Daily Summary                |                           |                |                  |                                                                                                              |
|------------------------------|---------------------------|----------------|------------------|--------------------------------------------------------------------------------------------------------------|
| Daily Costs                  |                           | -              |                  |                                                                                                              |
| Cost Des                     | Vendor                    | Ticket         | Field Est (Cost) | Note                                                                                                         |
| Crane Services               | T & T Trucking            | 225908         |                  | 40 ton crane. Operator (Tim)                                                                                 |
| Rentals - Misc               | Pacific Petroleum         | R-19468        |                  | House Trailer, gray water tanks, portable restroom                                                           |
| Crane Services               | T & T Trucking            | 226059         |                  | 110 ton crane. Operator (Mike)                                                                               |
| Labor - Contract             | Steve Cardiff             | 2015-26        |                  | Steve Cardiff                                                                                                |
| BOPE                         | Weatherford International | 11447535<br>SR |                  | Choke Manifold, Generator,<br>2xblower, air compressor,<br>hoses, Super Choke, Spools<br>adapters, API Rings |
| Labor - Contract             | BCI                       | 17140          |                  | Labor, Laborers, man lift,<br>mules, air comp, septic<br>tanks, crew with tools,<br>barricades               |
| Rentals - Misc               | Pacific Petroleum         | 185205         |                  | Got parts to stabalize HT's.                                                                                 |
| Labor - Contract             | BCI                       | 17138          |                  | Equipment, operator, truck, fuel truck                                                                       |
| Tanks/Bins                   | Pacific Petroleum         | R-19464        |                  | Portable tanks at 69 site,<br>Light Tower                                                                    |
| Rentals - Misc               | Pacific Petroleum         | R-19474        |                  | 9 x House Trailers, Gray<br>water tanks, 13 x Portable<br>water trailers                                     |
| Rentals - Misc               | Pacific Petroleum         | R-19475        |                  | 10 x generators,<br>containments, fuel trailers,<br>light towers, office trailers                            |
| Rentals - Misc               | Pacific Petroleum         | R-19477        |                  | 3 x House Trailers, Gray<br>tanks, 3 x PWT, 3 x<br>Generators, Containments                                  |
| Wireline - Production Equip. | Western Wireline          | 13027          |                  | Marine Wireline unit,<br>Slickline unit, lubricator,<br>flanges, pump                                        |
| Wireline - Production Equip. | Western Wireline          | 12931          |                  | Offshore unit 306, temp log,<br>baker setting tool, lubricator<br>crew                                       |
| Trucking - Non-Fluid         |                           | 4886515        |                  | ACME Trucking - Driver<br>Retention 11/2/15-11/15/15<br>(Preston)                                            |
| Trucking = Non-Fluid         |                           | 4884104        |                  | AMCE Trucking - Driver<br>Retention 11/2/15-<br>11/15/2015. Luther                                           |
| Trucking - Non-Fluid         |                           | 4884103        |                  | ACME Trucking - Driver<br>Retention 11/2/15-11/15/15.<br>Shaun                                               |

Report Generated on: 12/21/2015

## Ex. I-9

1133370 CALLER STATED THAT DURING WELL KILL ACTIVITIES AN OILY MIST WAS BEING RELEASED INTO THE AIR AS WELL AS OILY LIQUID BEING RELEASED TO THE GROUND IN THE AREA OF THE WELL.

| INCIDENT LOCATION  |                  |
|--------------------|------------------|
| INCIDENT DTG       | DISCOVERED       |
| INCIDENT DATE TIME | 11/13/2015 13:17 |
| INCIDENT CAUSE     | OTHER            |
| YPE OF INCIDENT    | IXED             |

| ATION NEAREST CITY | NORTH RIDGE        |
|--------------------|--------------------|
| (C)                | NOR                |
| LOCATION_STREET2   |                    |
| ١                  |                    |
| LOCATION STREET1   |                    |
|                    |                    |
| LOCATION ADDRESS   | 12801 TAMPA AVENUE |

| CATION_STATE | LOCATION COUNTY | LOCATION ZIP | DISTANCE FROM CITY | DISTANCE UNITS | DIRECTION FROM CITY | LAT_DEG | LAT MIN |
|--------------|-----------------|--------------|--------------------|----------------|---------------------|---------|---------|
|              | LOS ANGELES     | 91326        |                    |                |                     |         |         |

| WATERWAY CLOSED     | Z |  |
|---------------------|---|--|
| AIR CLOSURE TIME    |   |  |
| AIR CORRIDOR DESC   |   |  |
| AIR CORRIDOR CLOSED | Z |  |
| DAMAGE AMOUNT       |   |  |
| ANY DAMAGES         | Z |  |
| NIIMBER EATAI ITIES |   |  |
| ANY EATAI ITIES     | z |  |
| NIMBER HOSPITALIZED |   |  |

| 15-6708 SUNNY 20 SW U | STATE AGENCY REPORT NUM | OTHER AGENCY NOTIFIED | WEATHER CONDITIONS | AIR_TEMPERATURE | WIND SPEED | WIND DIRECTION | WATER SUPPLY CONTAMINATED | SHEEN SIZE |
|-----------------------|-------------------------|-----------------------|--------------------|-----------------|------------|----------------|---------------------------|------------|
|                       | 15-6708                 |                       | SUNNY              |                 | 72         | NS (           | ٦                         |            |

CURRENT SPEED | CURRENT DIRECTION | WATER TEMPERATURE

| COVERED               |       |  |
|-----------------------|-------|--|
| PIPELINE              | D     |  |
| EXPOSED_UNDERWATER    | Z     |  |
| PIPELINE_ABOVE_GROUND | ABOVE |  |
| DOT_REGULATED         | Э     |  |
| PIPELINE_TYPE         |       |  |
| NPDES_COMPLIANCE      | ם     |  |

IF REACHED WATERAMOUNT IN WATERUNIT OF MEASURE REACH WATER NO